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(
ABSTRACT

A
Basic theories for polarization utilization in radar target

reconstruction are presented and a general literature review with

many pertinent references is given.

The mathematical descriptions of polarization in terms of the

Poincare polarization sphere are introduced and the relationships

existing among the radar scattering matrix [S], the Stokes

reflection matrix [M], the modified Mueller matrix [Mm], and the

coordinates of the related co-polarization and cross-polarization

nulls on the Poincare sphere are derived.

It is shown that a scattering phenomenon can be uniquely
expressed given the elements of either one of [S], [M], [Mm] or

{1

the coordinates of the optimal polarizations, i.e. unique

inversion relations among the four equivalent representations

exist which is relevant to target polarization synthesis.

The developed theories are verified by computer computation

using measurement data and/or model scattering data as inputs.

The compucer programs are listed and examples of our optimal

polarization analysis are presented for the monostatic, relative

phase case. Single perfectly conductingý target shapes and some

sea clutter testing models witn and without target were chosen;

and our studies demonstrate clearly that the optimal polarization

concept introduced by KENNAUGH is very useful in radar target

analysis as will be further pursued in cther forthcoming reports.

1--
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CHAPTER ONE

INTRODUCTION

In recent years there has been a rapidly expanding volume of

research from both a theoretical and experimental point of view,

directed towards the determination of the characteristic

properties of radar targets through the use of polarization. The

fact that makes this type of investigation possible is that the

scattering properties of radar targets are dependent on the

polar•zation of the incident radiation. This dependence which

manifests itself as a depolarization of the scattered wave, is a

function of the structure and gecmetry of the scatterer thus

being characteristic for a particular target. It has been

demonstrated that a radar target acts as a polarization

transformer. This transformation was expressed (Sinclair 1948) ds

a matrix [S] which could be incorporated into the radar range

equation. Kennaugh (1950) gave a geometrical meaning to the

transformation by representin& the power received by a radar on

the Poincare sphere. In his series of reports (1949-1954),

Kennaugh also demonstrated that there exist two radar

polarization states for which che radar receives zero sigiial from

the target, which are known as null polarizations. As it will be

shown lati.r the null polarizations (co-and cross-polarization

nulis) along with the polarization orientation invariant, i.s.

the slan of the scattering matrix [S] (span{[S]}=1i Z

IS iji ,where the Sij are the elements of the matrix [SI),

can be used to describe in their entirety the characteristic

proper-ties of a target at one frequency and for one aspect.

- i
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It has been established experimentally (Daley 1978-79,

Weisbrod and Morgan 1979) that the null polarizations can be used

in order to discrluinate targets against scattering clutter,

which is of great importance. This meets greatly the existing

tremendous need for improved clutter rejection methods in order

to detect accurately small surfices which is also of great

significance to military, geophysical and environmental remote

sensing. It has been shown (Weisbrod et al, 1979) in the case of

sea clutter that its non-random behaviour manifests itself as a

characteristic clustering of co-and cross-polarized nulls as

plotted on the Poincare sphere. This clustering was noticeably

disturbed wich the presence of a target. This phenomenon could

lead to zero false alarm rate discriminants with the use of

theoretical models extending existing clutter statistics,

sensitive to the changes in thti clustering of co-pol and cross-

pol nulls.

In view of the fact that the co-and cross-polarization nulls

along with the polarization transformation invariant (span of

matrix [S] ) are characteristic of a particular typ.' of target

for one aspect and at one frequency, these quantities should be

given directly from the measurement data and recordied on the

polarization sphere and/or its associated polarization maps.

So far, the polarization utilization in radar target related

phenomena has been accomplished through the use of the radar

scattering matrix [S] and the optimal polarization pairs of the

co-and cross-polarization nulls have been expressed in term of

I

-:7,. - - .,- .. ...- -.--.. • .. . ., •. . . . . , • • *' • i
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the [S] matrix components. The use of the Stokes reflection

matrix or Mueller matrix (Mueller, 1948) has been overlooked even

though, it contains as much information as the scattering matrix

and furthermore it is easier to obtain, since it involves only

amplitude (power) meaawrements and not phase determination as in

the case for the matrix (S]. There is also convincing evidence

(Leader 1978, Boerner 1979) that the Mueller matrix elements

behave in a manner characteristic of the material properties of

the specific type of clutter they represent. Though the

interpretation of this behaviour is in need of further

investigation, one can safely assume that the information

provided b ;be matrix (M] can be very useful in establishing
J

target and particularly clutter characteristics especially for

the incoherent scattering case. Due to the "additivity" property

(Chandrasekhar 1950, Ishimaru 1978) of the Stokes parameters

(Stokes, 1852) of independent waves, the independent incoherency

properties of clutter are explicitly contained in the matrix [M]

while they are only implicitly inherent in the [S] matrix. In

addition, most of the experimental statistical clutter

distributions are given , in terms of the components of [M].

Therefore, in order to interpret scatter characteristic

polarization properties in terms of the associated co-and cross-

polarization null statistics on the Poincare sphere, it would be

highly practical to express these optiwal polarizationa in terms

of the Mueller matrix.

In view of the above, we have obtained here the scattering

matrix elements from the Mueller matrix (both the matrix [M] and

L~d
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its modified form [Mm] for the bistatic and monostatic cases).

Thirv thR problem of obtaining the scattering matrix with relative

phases from the knowledge of the Mueller matrix is feasible. The

expressions related to the problem were nubsequently tested

against real measurements for the case of sea clutter provided to

us by Mr. .1. Daley of the Naval Research Laboratory. In addition,

we have shown that the elemcnts of [S] ,[M] and/or [Mm] can be

generated from the knowledge of tae cadius of the Poincaro sphere

and frota the spherical coordinates of either both co-polarization

(COPOL) or one COPOL plua one cross-polarization(XPOL) null. ThJs

inverse relationship i importent as ft will assist us greatly in

the target polarization synthesis problem.

The text of the present report is comprised of five Chapters.

In Chapter Two a general review of the existing theoretical and

experimental work in radar target polarization related phenomena

is given. Chapter Three, covers the theoretical principles on

which the Basic Polarization Descriptors, the Scattering matrix

[S], its Transformation Invariants and Mueller Matrix [M] are

based. In Section 3.6.2 of the same Chapter it is shown how the

amplitudes and relative phases of the elements of the scattering

matrix [S] are derived, given the Mueller matrix [,'] or its

modified form [Mm]. Also, in the same Chapter the relationship

between [M] and [Mm] is given. Similarly, we show how the

elements of (S] , [M] and/or [Mm] can be regenerated fronm the

knowledge of the spherical coordinates of the two COPOL nulls or

one COPOL plus one XPOL null. In Chapter Four the expressions

obtained in Chapter Three, were tested satisfactorily against
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the data available to us. Also for the sake of completeness, we

have calculated in Chapter Four the Mueller mitrix elements (for

both [M] and [Mm] matrices in the monostatic case) from the

scattering matrix elements generated for various target shapes

and sea clutter.In addition, the optimal polarization rairs of

the co-and cross-polarized nulls were calculated and their

coordinates on the Poincare sphere were found. Finally the

summary of our results, conclusions and recommendations are given

in Chapter Five. Proofs of some pertinent identities and

computer programs for calculating relevant parameters are given

in the appendices.

II

IIi

T.. . . .i
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CHAPTER TWO

GENERAL REVIEW

The utilization of polarization in radar target and clutter

studies has been the subject of rather extensive theoretical and

experimental research efforts in recent years.

First Sinclair(1948) showed how a radar target can act as a

polarization transformer and he was able to express this property

with the use of a matrix which was incorporated in the radar

range equation. There followed a series of papers by Booker,

Rumsey, Deschamps, Kales and Bohnert(1951) on polarization, as it

is related to radar antennas, which constituted the basis for

future research on the subject. Huynen et al(1953) initiated from

then on studias on radar returns by investigating the effects of

polarization on radar scattering by ground targots and

precipitation. Among the pioneers in the field of theoretical

work on radar target scattering were Kennaugh(1949-1954) and

Gent(1954). Kennaugh was also the first worker to introduce

concepts of such potential impact as the optimal polarizatP'ns of

a radar target(1949). Grdves (1956) introduced the polarization

power matrix which gives the total power back-scattered from the

target for any transmitted polarization. Based on Kennaugh's

work, Copeland(1960) gave a classification of the single radar

target by measuring the received complex voltages using rotating

linearly polarized antennas. Studies on polarization

characteristics in the scattering from symmetric radar targets

were reported by Crispin(1961), Bechtel and Ross(1962). and

Huynen(1962, 1963). A summary of updating radar measurements was
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presented by Huynen, Landry, Webb and Allen at the Radar

Reflectivity Measurements Symposium in 1964. In a Special IEEE

Proceedings Issue on radar reflectivity (August 1965), the theory

and measurement techniques for target scattering matrices

(asymmetric objects included) were discussed by

Lowenschuss(1965), Huynen(1965), Copeland(1960), Kuhl and

Covelli(1965).

A vast amount of research has also been performed on time-

varying distributed targets which is independent of the

previously cited work on single radar targets. In his analysis of

single targets, Gent(1954) considered also ensembles of

distributions of single targets. Ament(1960) studied the problem

of whether reciprocity holds for rough surface scattering and

Ko(1962) gave an introduction with application to partially

polarized scattering. Several statistical models for terrain are

given by Spetner and Katz(1960). Studies of scattering from rough

surfaces using scalar theory, which will remain classical, were

treatod by Beckmann and Spizzichino(1963) and updated by

Beckmann(1965). Various rough surface models related to both

theory and measurement have been studied by Beckmann(1965),

Parks(1964) and Renau and Collinson(1965). Fung(March 1966, July

1966,1967) treated rough surface scattering using vector thoery

which also considered depolarization of electromagnetic waves.

Using high-frequency asymptotic theories based on the Kirchhoff

approximation, Hagfors(1967) studied the depolarizat.ion of Lunar

Radar Echoes and Stogryn(1967) worked on electromagnetic

scattering from roughfinitely conducting surfaces. Van de

. . .. -i
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Hulst(1957) gave an introduction to high-frequency scattering.

Worth mentioning here, are also the overall reviews of

contributions to wave scattering from rough surfaces and various

kinds of clutter, given in the Transactions of the IEEE Special

Issue on Partial Coherence(1967), in "Radar Astronomy" edited by

Evans and Hagfors(1968), in Bowman et al(1969), Crispin and

Siegel(1968), in Ruck et al(1970) and in Beckmann's book on the

depolarization of electromagnetic waves(1968). Huynen(1970)

developed a phenomenological theory, applicable to all radai

targets, according to which the radar target appears as an object

for investigation through the process of the radar illumination.

Thus one can avoid going into constructions of specific

statistical and geometrical models, as it has been the case in

most of the literature on the subject. The mathematical framework

for the theory is given in tLzms of the target polarization

scattering matrix, which has been used extensively in the Russian

literature(Kanareykin et al, 1966, 1968; Stead, 1967;

'Zhivotovskiy, 1973; Potekhin et al, 1969; Kozolov, 1979, and

Basalov et al, 1973).

Due to its importance, several efforts have been made recently

to use the polarization sensitivity of radar targets towards a

classification of radar targets. Thus the classification of radar

targets suggested by Copeland has been recently investigated

experimentally by Ste{.nbach(1973, 1976). Studies on some methods

for radar target identification are given by Von Schlachta(1977),

Crom(1973), and Jeske(1976). There has also been an extensive

amount of work to be found in the recent literature on
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precipitation scatter (Schneider and Williams, 1976; McCormick

and Hendry 1976; Barge and Humphries, 1979, 1980; Hall et al,

1980; Bringi et al, 19/9), on scattering from irregular

surfaces(Bass and Fuks, 1975) and sea clutter(Valenzuela 1968,

1978). A detailed review on radar reflectivity of land and sea

is given in the textbook of Long(1975) and also was discussed in

Stiles and Holtzmann, 1979.

Of particular' interest to the present work is the recently

developed literature on studies of the co-and cross-polarization

nulls of radar targets which promise to lead to very effective

radar target versus clutter discrimination techniques. Recently,

studies made in the Naval Research Laboratory(Daley 1978, 1979;

Weisbrod and Morgan 1979) showed that, in the case of sea clutter

the co-and cross-polarization nulls of clutter exhibit a non-

random stable distribution when mapped on the Poincare sphere.

This distribution was disturbed in the presence of a target, a

phenomenon that may lead to effective target discrimination when

fully investigated. The importance of the co-and cross-

polarization nulls in radar target versus clutter discrimination

has been emphasized particularly by Poelman(1971, 1974, 1976,

1977). Recently loannidis and Hammers(1979), Rosien et al(1979)

have suggested schemes for radar identification in clutter, based

on the characteristic properties of the co-polarization nulls.

We also wish to refer to the forthcoming IEEE Trans. AP 29(2),

March 1981, Special Issue on "Inverse Methods in

Electromagnetics", in which several papers on polarization

correction are presented.

.. .
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Target versus clutter discrimination for targets embedded in

terrain clutter has been improved by utilizing also

depolarization effects(Gent et al, 1963; Weiss, 1967; Egan et al,

1967; Dainty, 1975). It was shown by Gough and Boerner(1979),

Egan et al(1967) that the correlation functions of linearly and

circularly polarized components allow discrimination between

metal and dielectric random scatterers. In their studies Gough

and Boerner(1979) are using the additive properties of the

Mueller matrix in order to analyse the interaction of coherent

target signal with various incoherent clutter components. The

usefulness of the Mueller matrix(Mueller 1948, McCormick 1950)

has also been recognized by Hagfors(1967), Leader(1978) and

others.

Concluding we cite here other textbooks and papers related to

radar target scattering as well as to the theory on partial

coherence. Thus we distinguish here the works by Kraus(1966),

Nathanson(1969), Thiel(1970), Meyer and Mayer(1973), Boerner (The

State of the Art Review, 1978), Born and Wolf(1966),

Ishimaru(1978), Strohbehn(1978); in the Russian literature the

works by Kobzarev(1969), Shirman(1970), Gorshkov(1974),

Kozlov(1979) and Zhivotovskiy(1976). We note here that in

optics major contributions were made by R. Clark

Jones(1941-1956) as was documented in Shurcliff(1962), Hecht and

Zajac(1976) and Roots(1978).
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CHAPTER THREE

THEORY

3.1 Introduction-:

Chapter Three discusses in general the theoretical principles

related to the utilization of polarization in radar target

scattering phenomena. First, in Section 3.2, the basic

descriptors of the polarization of monochromatic plane waves are

given. In Sections 3.3 and 3.4, the theory of the radar cross-

section scattering matrix is discussed and its transformation

invariants as well as its representation on the Poincare sphere

with the use of the -o-and cross-polarization nulls are

considered. In Section 3.5, the Stokes or Mueller matrix is

reviewed and a method of reconstructing the scattering matrix,

given its associated Mueller matrix is introduced in Section 3.6.

In the same Section, the relationship between the Mueller and

modified Mueller matrices is given. Finally in Section 3.7, the

elements of the scattering and the Mueller matrices are

regenerated from the knowledge of the spherical coordinates of

either of the two co-polarization(COPOL) nulls or one COPOL plus

one cross-polarization(XPOL) null.

3.2 Basic Polarization Descriptors

3.2.1 The Polarization Vector

The polarization of an electromagnetic wave describes the

orientation of the field vectors at a given point during one

period of oscillation. In the present treatment, polarization is

referred to the orientation of the electric field vector E only,

since we are concerned with the far-field scattered radiation and

F .
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the magnetic field vector H is perpendicular to E in direction

and proportional to that of E in magnitude. The direction along

which a wave propagates is given by the propagation vector k. In

an isotropic medium, the plane containing E and H and which is

perpendicular to the direction of propagation, is called

polarization plane [IEEE Standard 149, 19791. In the case where

the polarization of a wave is the same at every point in space,

the wave is said to be linearly or plane polarized. We consider

here monochromatic plane waves, i.e., plane waves at a single

angular frequency w, propagating along the z-axis of a

rectangular coordinate system xyz, where the xy plane is a

reference plane such as the mean surface of the earth. The

electric field vector of a time-harmonic plane wave at a

position r (x, y, z) and time t is given by

E(r,t) = hej(wtkr) - hej(wtkz) (3.1)

where k is the propagation vector with magnitude k = 27/X, X is

the wavelength of the wave in free space, h is the complex

electric field phasor, known as the complex polarization vector.

In radar propagation the vector h = h h, with complex magnitude h

and direction specified by the unit vectorh, may be decomposed

along the two orthogonal directions x and y represented by the

unit veutors% and h, in the following manner
Xx yy

It It h/n It 1 + h It (3.2)
-x X y y



PAGE 13

or

h = [ = [eJx (3.3)
J Lay J Ly] yJ

wheree ax2 ay are the polarization vector component

magnitudes, 6x. 6y are their phases and 6 = 6y - 6x

is their phase difference. In the antenna language, the

magnitude of the polarization vector I h V = a2  = ax2 +

a 2 is a measure of antenna radiation efficiency and 6 isy

the phase difference between the x and y channels of the

antenna (Kraus, 1966).

3.2.2 The Polarization Ellipse

According to (3.1) and (3.3), the electric field vector E

consists of two components along the x and y axes which are

given by

Ex = Re{hx eJ(wtkz)} = Re{ax ej 6x e )

= a cos(V + 6) (3.4a)x
E = Re(h ej(wt-kz)} = Re{a ei 6 y ej(wt-kz)}y y y

= a cos(C + S ) (3.4b)
y y

or

E = E h +E h = a cos(c+6 )h +a cos(E+6 )h (3.4c)
- xx y y x x x y y Y

where c = wt - kz, Re{*) stands for the real part of a

complex number 't).

The curve that the electric field vector E describes at a

-- -. . . . Lu .. t
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typical point in space, is the locus of the points whose

coordinates are given by (3.4). The nature of this curve is

found after eliminating c between Eqs.(3.4) and after some

algebraic manipulation, to be given by

(E) I (Ey\ E ( E > 2)
+ -2 cos6 = sin26 (3.5)

which is the equation of an ellipse known as the

polarization ellipse. The ellipse is inscribed into a

rectangle whose sides are parallel to the coordinate axes

and whose lengths are 2a and 2a (Fig. 3.1).

In Eq. (3.4) if ax - 0 , the wave is linearly polarized

in the y-direction. If a = 0, the wave is linearlyy

polarized in the x-dir.ection. Following Kraus(1966), if 6 =

Sx = 0 and a = a y the wave is also linearly

polarized but in a plane at angle of 450 with respect to the

x-axis. A further special case of interest occurs when a

= a and 6 = ±900. The resulting wave is circularly
y

polarized. When 6 = +900, the wave is said to be left

circularly polarized and, when 6 = -900, it is said to be

right circularly polarized. Thus, from (3.4) we have for 6

+900, at 6 = 0, z = 0 and t = 0, that E - 0 and E =
y x y

a as in Fig. 3.2a. Under the same conditions but at a
y

later time such that wt = 90*, Ey 0 and Ex a , as

shown in Fig. 3.2b. The rotation of the electric-field
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y oY • Ay (VERTICAL)

(HORIZONTAL)

Fig. 3.1 : The Polarization Ellipse.

Wt=0 Wtt= 90

z .. .. >-z .. .. . . " ..
x E

Fit. 3.2 Change in direction of E for left circular
polarization. Time wt=O in (a) and wt=90 in'(b) (Kraus 1966).

.. ......... '
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vector is thus clockwise with the wave approaching.

According to the IEEE standards(1979) this sense of rotation

is definded as left circular polarization. According to the

older usage of classical physics (Boxn and Wolf), this sense

of rotation (clockwise with wave approaching) is deflnued as

right circular polarization, or opposite to the IEEE

definition (Kraus 1966).

If the wave is viewed receding (from negativa z axis in

Fig.3-1), the electric vector appears to rotate in the

opposite direction. Hence, clockwiss rotation with the wave

receding is the same as counterclockwise rotation with the

wave approaching. In the following the IEEE definition will

be used, since it could also be defined (without reference

to the wave direction) by means of helical-beam antennas

(Kraus, 1950). Thus, a right handed helical-beam antenna

radiqtes or receives right circular (IEEE) polarization. A

right-handed screw, is right handed regardless of the

poait-on from which the helix is viewed. There is no

possibility here of ambiguity. In general Eq. (3.5)

represents a left-handed elliptical polarized (ep) wave if

sin 6 > 0 and right-handed if sin 6 < 0.

We now seek ultimately to define the polarization vector

in terms of the geometric descriptors of the ellipse of the
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elliptical polarized (ep) plane wave it represents. The

reason for this, is that, Eq. (3.3) is inconvenient when it

comes to dealing with the proporties of radar targets since

his being associated with at fixed (xyz) antenna coordinate

.ystem of which the radar targets are independent.

The geometric descriptors of an ellipse are

1) its size given by the magnitude a I I of the

polarization vector,

2) the orientation of the ellipse with respect to the x-axis

given by the orientation angle 0(0 : 0 w),

3) the elliptLcity angle -, (-r/4 : T it/4) such that cot r

is given by the ratio of the semimajor to semiminor axes of

the ellipse and it: represents the axial ratio (AR), where

1 :5 AR , and

4) the sense in which the ellipse is being traversed. It

will be shown later that the sense can be given by the sign

of T. Though, it seems natural to define the sense as right-

handed or left-handed according to whether the rotation of

the electric vector E and the direction of propagation from

a right-handed ur left-handed screw as explained before.

We now choose a coordinate system (x',y) such that the

ellipse has an )rientation angle 0 = 0 in these coordinates.

According to Fi&. 3.1, the polarization vector h in this
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case can be given by

h(a'['a) Jacos']ejasn (3.6)
jasin'T

where a is called the "absolute phase" of the autenna, and

defines the phase reference of the antenna at time t = 0.

From (3.6), we notice that, when the sign of T changes, the

direction of sanse of polarization (.hanges, being left-

sensed for positive values of T and right-sensed for the

negative ones.

The general expression of the polarization vector for an

elliptically polarized wave with an ellipse of orientation 0

is obtained from (3.6) with the use of a rotation matrix

a aCr, ) = a COS e ja (3.7)

sino co- jsinT

The two descriptions of the polarization vector h of

(3.3) and (3.7) are equivalent, except that in the case of

(3.7), the antenna is descriped by geotwetric parameters. The

parameters a, 0, T, a are related to ax, a 6 and
X y x

5 accordiri$ -o the relations (Appendix A)
y

2 + a

2a a
xy

tan20 cor 6  (3.8)
a 2-a 2

x y
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2a a
xy

sin2T = sin6
a 2+a 2
x y

3.2.3 The Stokes Parameters

A practical way of representing the state of polarization

of an elliptical wave is through a set of parameters, which

all have the same physical dimensions. Such are the Stokes

parameters and they were first introducted by Stokes in his

studies of partially polarized light. These parameters

constitute a column vector y (Stokes vector) and they can be

defined in terms of the electric field vector components, or

the set(a , ay, 6 , 6 ) or (a, 0, T, a) as defined
y 4X

in Sections 3.2.1 and 3.2.2, in the following manner

(Appendix B)

go - I 2I2+1Ihy 12 = 2 + a 2 = a 2

91 Ih 2 -Ih 12 = a 2 - a I= a 2cos2'cos20 Q

g2  2Re(hxhy) = 2a a cos6 = a 2 cos2rsin2O = U (3.9)
2x y x y

g= -21m(h hy. = 2a a sin6 - a 2 sin2T = V
3x y x y

where

2+ 2 = £ 2++V
o0 1 g2+g3 = g l QgU3+V2  (3.10)

The component g. describes the intensity while gl' g2

and 93 represent the polarization of an ep wave since they

depend on the orientation of its ellipse and through the

ellipticity angle T on the sense in which the ellipse is

being described. The four Stokes parameters have the
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dimensions of intensity(power); each corresponds not to an

instantaneous intensity but to a time - averaged intensity,

where the average is extended over an interval long enough

to permit practical measurement. Although its components are

physically real parameters, the Stokes vector is a

mathematical vector, i.e. it is not defined in a three -

dimensional physical space but in a four-dimensional

mathemathical space. The description of polarization through

the Stokes parameters is widely applicable since it covers

the completely, partially or unpolarized waves. The

physical proporty of the 4-component vector will be

discussed in another forthcoming report dealing with quasi-

coherent pan-chromatic wave interaction.

In practice the modified Stokes vector s m is often

used with components

hx x x

gm, =+(I-Q) = h I a= y I (3.11)

and

9m2~g2 g3=3 as given in Eq. (3.9)

3.2.4 The Poincare Sphere

The Poincare sphere concept consists of mapping

polarization states on points of a sphere for completely

polarized ep waves. It constitutes a useful w-ay of

SLA
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representing polarized ep waves as it will be shown as the

present treatment unfolds. The polarization state of an ep

wave, which either is described by the polarization vector h

or the Stokas vector &, can be represented on the Poincare

sphere. Thus one can map the polarization vector h with

complex components hx and hy, given by (3.3), on the

Poincare sphere by using the auxiliary complex parameter

h x-jhy 1-jP

U = =(3.12)
hx+jhy l+j P

where P is the complex polarization ratio and it is equal to

hy

P =(3.13)
hx

Using (3.12) and (3.13), the polarization vector h can be

represented uniquely on a point on the Poincare sphere with

spherical coordinates (r, G, 0') which are given by

(Appendix C)

r=1 h 12 a2

co-latitude e = arccos( } = 7/2-2T (3.14)
ju 12+1

Im{u)

longitude 2' = 2• -phase(u} -arctan( )
Re(u}

It should be noted that absolute phases cannot be

represented on the Poincare sphere. In case the polarization

state is described by the Stokes vector S, it is easily seenI
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from Eqs.(3.9) that its g,, g2' g3 components can be

regarded as the cartesian coordinates of a point P on a

sphere of radius go, such that (¶/2-2i) and 20 are the

spherical angular coordinates of this point(Fig.3.3).

According to the above properties, the various states of

polarization can be mapped on the Poincare sphere which has

the following properties(Fig.3.4)

1. The Equatorial(x-y) plane divides the sphere into the

left-sensed upper hemisphere where t is positive (0 < T

r/4) and the right-sensed lower hemisphere where T is

negative (-1/4 S T < 0).

2. All linear polarizations (r = 00) are represented on the

Equator with horizontal polarization(H) at zero longitude *
= 20 = 0 and the veitical polarization(V) at the antipodal

location 2 =2= w

3. Left-handed circular polarization(LC,t=w/4) is mapped on

the zenith (glg 2=0,g 3 =g0 ) and right-handed circular

polarization (RC,3 -i/4) on the nadir

(gMg 2 =O,g 3 =g).

4. Any two orthogonal polarizations h (a,O,Tm' and

j •(a.,O+¶/2,-',aL) are wapped on antipodal pcints.

5. Statistical polarization can also be mapped on the

Poincare sphere, thermal radiation produces random

polarization states uniformly distributed over the

polarization sphere.
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JII
x9

ig gj"

Fig. 3.3 Representation of a polarization vector defined by its
Stokes vector g=(g 0,gg g) on the Poincare' sphere.

left circularpolarization (LC)

(North Pole

11-near vertical (V)

linear Polarizat ion

rIzlari at(Rc eqator

Polarization (H) /

(0' "0) right circular

\kPolarization (RC)

S(South Pole)

Fig. 3.4 Polarization at Cardinal Points of Poincare' sphere
(Kraus 1966).



PAGE 24

3.2.5 Polarization Charts

Polarization charts provide a useful tool for a

simplified representation of the state of any polarization

vector on a two-dimensional chart instead of using the

three-dimensional Poincare sphere, which though is still

preferable in case the XPOL and COPOL null characteristics

need to be studier, in detail. Descham-a(1951,1953) in his

tutorial study on tie Hyperbolic Protractor and Rumsey(1951)

showed how various mappings on the sphere can be related to

the power impedance(Smith) chart which was further folloýed

up by Huynen(1960), Poelman(1971), and also in the Russian

literature as e.g. in Kanareykin et al(1966,1968). There

exist many types of polarization charts and here we will

briefly review the properties of some charts which are being

used most frequently.

1. Rumsey p-and g-Charts

Rumsey(1951) has used the impedance concept which reduces

the field problem to a transmission line problem. The

analysis of impedance transformation occuring in

transmission line theory can again be simplified by working

in terms of reflection coefficients. The impedance concept

is successful in such applications largely because the

tangential components of the electric and magnetic fields

are continuous at a surface separating two different media.

* L,.,,-*
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For the same reason, he used the polarization ratio P defind

as the ratio of two orthogonal tangential components of

electric field, to be equally valuable in the analysis of

polarization.The polarization ratio P is analogous to

impedance, then Rumsey finds that the analogue of the

reflection coefficient is the ratio of the right-handed and

left-handed circularly polarized components which are

equivalent to the linearly polarized components used to

define P. Following Rumsey(1951)

1-p l-q jhy h

q p p jP , q=- ,
l+p 1+q h hx r4

h x hy are the linear x and y components of the

polarization vector, and hr, h£ are the right and left

circularly polarized components. Note that p=jP

=j(Polarization ratio). The transformation from p to q is

thus ideintical to the transformation from the current

reflection coefficient to the normalized impedance. In view

of the symmetry of the transformation we can think of p, and

vice versa q, as reflection coefficient or impedance. By

using these relations, Rumsey has developed the q and p

charts for representing any polarization vector.

Fig.3.5 shows how the orientation and shape of the

polarization ellipse are represented using th, Smith-

Buschbeck Chart as the q-plane. Fig.3.6 illustrates the

representation using ti.e Carter-Schmidt diagram as the p-

plane.
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For points on the g-plane Fi .3.5, (Rumsey (1951))

a) We have right-handed polarization for all points irside

the unit circle, and left-handed polarization for all points

outside.

b) The origin :epresents right-circular polarization, and

the point at infinity represents luft-circular polarization.

c) Constant axial-ratio contours are identical to the

circles of constant £WR on a Smith chart. The axial ratio is

equal to the SW• obtained by treacing q as a reflection

coefficient.

d) A point on the unit circle represents linear polarization

at an angle equal to one-half the polar angle.

e) The angle 0 between the x axis and the major axis of the

polarization ellipse is related to the polar angle 0 on the

plate by the simple relation 20=8.

f) the locus of the points representing polarizations for

which Ilh x/h yI is constant, is the set of circles passing

through the points q--±l (the short and open-circuit points),

the orthogonal set of circles is obtained if the phase of

h /h is constant.

For points on the p-plane, Fig,3.6, (Rumsey (1951))

a) Points in the right half-plane represent right-handed

polarization and points in the left-plane represent left-

handed polarization.
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b) Points on the vertical axis represent linear polarizi~tior.

at. various angles.

a) Circular polarization is represented by the points(l,0)

and (lCj

d) Constant axial-ratio contours arp identical to the

circles of constant standing wave ratio(SWR) on the Carter-

Schmidt impedancs chart. The axial ratio is equal to the SWR

obtained by treating p as an impedance.

Klso4

p Algo- Ier~n~~o

Fig.~~~~~~ 3.6n p-plne Pwlrzati n Cat(us 15)
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2. Deschamps 0 and S charts-:

Deschamps(1951,1953) has used the p, larization ratio P

which can be deduced from the parameters 0, c(orientation

and ellipticity aAgles), to derive the two sets of equations

cos2l = cos2Tcos2o

tan 6 o tan2tczc2o

or

tan20 = tanZtcos6

sin2% = sin2Tsin6

where P =tanle J (6 is the phase difference between y and

x channels and tant is the amplitude of the polarization

ratio). He has used two projections on the equator of the

sphere. The first one, an orthographic projection (chart 0)

is shown in Fig.3.7. The other, a stereographic projection

from the nadir, is shown on Fig.3.8 (Chart S).

In both cases by drawing the lines along which € and c

are constant (meridians a:ind parallels) and the lines along

which 6 and r, or the ratio tanr, are constant, we have a

method of direct conversion from any two of these parameters

to the others.

The lines 6 constant are circles on Chart S arnd ellipses

on Chart 0. The lines V constant are straight lines

perpendicular to HIV on Chart 0 and circles on Chart S.

JI,
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Fig. 3.7 :Orthographic Polerization Chart(O) (Deschamnps 1951,53).

10[110
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Fig. 3.8 S~~ts rorp~ ~tLz~(() (Dacap
ISOPRAC CS3).MG
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3. Huynen's Chart

Huynen(1970) has presented two polarization charts, each

representing one hemisphere (top and bottom), to map the

whole sphere on a plane. Fig.3.9 shows such a circular

polarization chart, which maps all positive or left-sensed

polarizations. The circumference of the circular chart gives

all linear polarizations and the chart is left circular,

Notice the effect of 20 on points of the chart such that

"horizontal" polarization (OmO*) is mapped on the extreme

right- hand side of the chart, while "vertical" polarization

(20l80O) is mapped on the extreme left-hand side. All

points on the chart represent polarization with orientation

w5W. Note the intereotixng fact that the radial distance of

a point on the polarization chart is measux'ed by cos2,.

' Fig. 3.9 : aynian',; Polarization Churt (Huynen 1970).

I /

Al
" " " " . . ". .... .' ....... ``
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4. Poelinn's Modified Chart

Poelman(1971) has modified Huynen's chart which was

explained before. He used in his modified polarization chart

the polar coordinates 20 and r such that

71-cos2"r - tant •
1 cos2,c

as then the geometric parameters 0 and r can easily be read

off. Note that Poelman used r=tanT instead of cos2r which

was used by Huynen.

In Fig.3.10 the distinguished polarizations with the

proposed code numbers for the right-sensed polarization are

presented on the modified polarization chart. A similar

chart for the left-sensed polarization can be given, where

for the linear polarization the same code numbers can be

taken as given in Fig.3.10,

In Table 3.1, the 149 used polarizer settings (8,6) for

ths right-sensed polarizations, including the 28 linear

polarization and the corresponding code numbers are given.

It follows that a group of 270(149+149-28) different

polarizations (right-and-left-sensed) is chosen to represent

all posoible radar polarizations.

In Table 3.2 the polarization characteristics (r and *)

and cotcresponding code numbers are listad for the right-

Ss1dLenLed
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code r 0 code r 0 code r
No. No. No.

0 001 0 0 19 0 115.5 37 0.11 51.70

2 0 -6.5° 20 0 1220 38 O.10 58.30

3 0 13 21 0 128.5 39 0.09 64.9o

4 0 19.50 22 0 1350 40 0.07 70.9'

5 0 25.5' 23 0 141.50 41 0.10 78.2'

6 o 32 0 24 0 1480 42 0.07 84.-

7 0 38.5 25 0 154.5° 43 0.11 900

8 0 450 26 0 160.50 44 0.07 95.-1

9 1 51.5' 27 0 1670 45 0.10 101.80

10 0 58 28 0 173.5' 46 0.07 109,10

11 0 64.5 29 0.11 00 47 0.09 115.10

12 0 70.5 30 0.07 5.10 48 0.10 121.7'

13 0 770 31 0.10 11.80 49 0.11 128.30

14 0 83.5 0  32 0.07 19.1 0 50 0.11 135°

15 0 9 0 33 0.09 25.1' 51 0.11 141.70

16 0 96.5 34 0.O0 31.7' 52 0.10 148.3°

17 0 1030 35 0.11 38.30 53 0.09 154.90

18 0 109.5 36 o.11 450 54 0.07' 160.9°

Table 3.2: Survey of the polarizat1.oacharacteristics ellip-
ticity ratio, r, and orientation angle, 0, cor-
responding with the code numbers for the right-
sensed polarizations. (Poelman, ].971)

• it
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.<o<", --• - o•--, - < '---

Icode r ~ code r ?code r~
. No. No. N..

55 0.10 168.2° 76 0.21 120.7° 97 0.31 j 80.2

56 0.07 174.90 77 0.23 127.8° 98 0.34 84,8°

57 1 0.23 00 78 0.23 135,0 99 0.35 900

58 0.21 6.00 79 0.23 142.20 100 i 0.34 95.20

A 0.21 16.,11 80 0.21 149.30 ;0 0.,31 99.801 Ji
01 o.18 24.00 8- 0.18 156.0o 102 :0:34 108.9°

S82 0

62 0.21 30.70 0.21 163.9' 104 0.31 118.90

6 0.23 1 3780 [174 0' 15 126.80
0 0

64 0.23 450 85 0.35 00 106 0.35 1350:1 ,, 0 "/O'4 i3 2

6.5 0.23 52.20 1, 86 0.34 5.20 07 0.34 i 143.2
55 0.21 59.3 87 0.31 9.80 108 0o

7 ,0

II ;i o -0.8 66.00 88 0.34 -18.9~ It0 0 ý34 161.lf0

68I oi 89 0.
Cd I7-,9 , 03 289Iil 0.3. 170.2'

70 0.21 8,1.0° 91 0.34 36.80 i 1 0.34 174,80

"7i 0.23 900 92 0.35 45° 1I I. 0.48 0

1 0,

S72 0.21 96.00 9 .4 5.o'12 ~~ 930I45.- 14 0.46 7.8°

0 " .2'1 106.1°0 0. 31 61. I -1 0 4 14o2°'
14 95L75 0..oJ8 114.o00. 96 0.34 71.1 0 11 0,.51 21..°

Table 3.2 (con't)



PAGE 37

- -r --- _-- III I Il " -a"_ a -~-•

code r code r I co-e r
No. No. No.

- - -0- - - - -

117 0.41 26.1° 134 .0.48 135' 149 0-59 121.1

S119 0.46 33.9 a 135 0.46 146.10 150 0.62 135'
01 04 09 13111913

120 0.48 45 0 137 0.41 153o90 151 0.59 148.90
121 0 0 1520.
122 0.46 56.1 138 0.51 159 152 0.59 167.60

123 0.41 63.90 139 0.41 165-.8 153 0.80 00

124 0.51 69.0o 140 0.46 172.20 154 0.72 22,10
125 0.41 75"801 141 o.62 0 155 0.80 450

126 0.46 82.20 142 0.59 124 0 156 0.72 67.90

0.48 900 143 0.59 31.10 •S 0.80 90

128 0.46 97,80 144 0.62 450 158 0.72 112.10

129 0.41 ,04.20 145 059 5 159 O80 1350
00

130 0.51 1o.0011 ii146 0.59 77.6 160 0.72 157.9'

131 0.41 116,,I° 147 0.62 90 161 1 -

132 0-40 123.90 '-. 0

Table 3.2 (con't)
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polarization, incliding the linear polarization.

Poelman(1977,1978) has used also another version of the

modified polarization chart Fig.3.11 which is very similar

to the one shown in Fig.3.11 but with using the polar

coordinates 20 and p=l-r.

5. Optimal Polarization Charts

The optimal polarization charts (Kennaugh, 1952, Huynen,

1970) will be discussed in the forthcoming reports. On these

charts, the COPOL and XPOL nulls will be drawn for diffirent

aspect angles and different frequencies for various targets

and sea clutter.

3.2.6 Canonical Polarization Pairs

The power P(h.,h.) received, by a receiving antenna

with polarization hj(a,,@jt.) due to that

transmitted by hi~aiai,Oi, i is found to be

given in general by (Huynen 1970 ):

P(hj~hi) = jai'az2[1+sin2T sin2T i+cos2(o,+0i)cos2t cos2•i] (3.15) -

Thus by selecting the parameters of the polarization pairs

(h.,hi), one can determine according to (3.15) the

magnitude of the received power. There are four such

canonical polarization pairs (Fig.3.12) of special

importance since they give rise to situations frequently

occuring in practical transimission reception interactions.

These are:
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ORTHOGONAL h.j

h h (a. and a. r.O= Jf, =1
horthogonal=hj - j jij j

antipodal, but undetermined in a and a:

CANNOT BE USED AS A UNIQUE DESCRIPTOR.

TRANSVERSE : h =hi , ): a hhi )=P maxIai a

-transverse -j (aj=aij= ij='=i j j =Ti

OPTIMAL RECEPTION ANTENNA MATCHING.

SYMMETRIC hj=hi(-i-.i) :e(hh i)=ai 4 cos 2 2T

hsymmetric=hj ji Ji, j j i

MOST FREQUENC TARGET POLARIZATION.

CONJUGATE hj=hi(-ai,-ii)

h-conjugate --j (aj=ai, pj=.ai' j =0i' j i

PRECIPITATION (CIRCULAR CLUTTER).

ORTHOGONAL SYMMETRIC

TRANSVERSE CONJUGATE

Fig. 3.12 Basi,- Polarization Pairs.
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3.3 Scattering Matrix[S:

The general radar t&rget detection technique consists of

having an electromagnetic radiation originating from a radar

transmitter scattered by the object under detection and

sampled by the radar receiver. The measure of the Intensity

of the scattered radiation in the far zone from the

scattering obstacle was usually described by the scalar

radar range equation expressed in terms of the radar cross-

section (RCS) a given by :

IEs (8 s 1 s )12' 1H (a los ,• )12

a=lim4R2R -lim4nR 2  (3.16)R4",. ii ei • ) R.-, i ( li ,

where R is the range (distance from target where the

scattered radiation is observed, Fig.3.13), E s, H s are

the scattered electric and magnetic field vectors at the

observation point at direction (8 s ) and similarly

Ei, Hi define the incident electric and magnetic field

vectors with direction angles 8, 0i'

-P, T; "
x Xt

p2 Yr

SOURCE RECEIVER

Fig. 3.13 Illustration of Radar Range Equation.

S.... .. .. ... . ' ' .. .'. .. . .. .. . .. • • .. . . . . .. •• - • - • -- " • " i• • • • '• " '• ••- .• • " .. .
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Eq.(3.16) gave unsatisfactory results with clutter

precipitation present thus yielding limited radar target

detection. Recognizing these difficulties, Sinclair(1948)

showed that by introducing polarization in the radar range

equation the problems could be overcome. lie proved that a

radar target acts a polarization transformer and this

polarization transformation can be described by a matrix

known as the scattering matrix. We note that in Optics

Jones(1941) introduced a similar matrix(Shurcliff, 1962).

Let the polarization vectors hs and hi for the

scattered and incident radiation, respectively, be defined

in terms of general orthogonal polarization base vectors

(hA hB) i.e.

•ecomplex components hA, c reesn ay
h hr

in
polarization by relative magnitudes and phases. The

scattering matrix transforms the transmitted polarization

hi into the polarization of the scattered field hs

according to

hS (6Ss)=[ ra(S ,0i,0i)]ei Oioi)

where [ I] in case vf A=H, B=V Is the "linear polarization"

restricted scattering matrix with -absolute phase, i.e.

J0B Fl A e .AA AB)

14i 4e(0BA_ ABJ1 Afcý_ei(OBBOAB)J

LFO
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where a and Oij represent the radar cross-sections and

the absolute phases of the target returns with received (i)

and transmitted (J) polarization='. 'rho matrix [ /o] in

Eq.(3.19) is defined in terms of the absolute phase *AB*

By making the substitution

lim - ijI where i,J=A or B (3.20)

then Eq,(3.18) be,..omt :

hs (SS]MAhi (3.21)

where [S]SMA is the scattering matrix with absolute phase

and it can be written from (3.19) and (3.20) by

[S SAis ISMIOAA'AB) IsAB I1eJOAB (3.22)ISIisM=

S BA SBB i SBAIeJ(OBA-OAB) ISBB IseJ(BB"OAB)

The scattering matrix represents the radar target for a

given frequency and fixed aspect angle . Thus at these fixed

frequency and aspect angle, the target is described

completely by the scattering matrix. However, in special

cases one and the same matrix may represent properties of a

set of different targets (Huynen, 1970). A particularly

useful feature of the scattering matrix representation is

that its intrinsic properties are a function of the target

configuration and do not depend on the measurement technique

or measuring equipment. However, the scattering matrix with

absolute phase does depend on the target displacement along
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the line of sight. In. order for tl-e [S]S1A matrix to be

specified completely, eight real numbers(four magnitudes and

four phases) have to be measured. The measurement of the

absolute phase of a target becomes very formidable because

of its dependence on the location of the target, the
direction of illumination, surface configuratian and the

radar frequency. Hence, one has to use hi•hly elaborate

measuring techniques. Morcover, the absolutE phases cannot

be mapped on the Poincare sphere (Thiel 1970) and thus the

JSIsA matrix caruot have a uniqiu rupres exentation on the

sphere. Beccuse of these difficulties, t¶he sa• t: ing matrix

with relative phase(SMR), where any one of the phasea of the

matrix alomentoi can be set to an arbitrary constant (most

commonly the ph4se of the croSS-'polarizsd Ls.M SAB, i.e.

SAB is chosen to be zero). Thus the scattering matrix. with

relativu phase [S]S•L• is according to (3.22)

S hAA SABjSJSMR =with 0 00,BA'BL3,0 , and (3.23)

.,BA SBBJ AB=0

This simplitication rehiuees the number required to speciIfy

completely the scattering matrix from ,ight to seven real

numbers.

Another important feature of defining relative phases

instead of the absolute ones is that relative phase terms

IN'
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can be recovered from amplitude only data (Kennaugh,19t49).

In the case of "bistatic" scattering one has : O8i,

0 0• aud S OS In the "wonostatic" case (both
S i AD BA'

transmitter and receiver antennas are at the same location),

we have S AUS BA because the reciprocity theorem and

conservation of energy should be satisfied for propagation

in an isotropic medium. We note that for anisotropic

scatters this condition need not be satified. 'Mhus the

scattering mai-tri4[S1 becomes syvmmetrtic in the

"monostatic" case and only five real numbers(three

amplitudes and two phases) are needed to specify it

completely.

Using (3.17), (3.21) and (3.22), we have

[hAl S A S AB1h Ai(.4

Lh B s LSBA S BB1 h B (.4

The polarization of tLe electromagnetic wave in (3.24) is

defined with respect to two orthogonal components which are

in general elliptical. The two special cases of elliptical

polarization i.e. linear and circular polarizations are the

most commonly used fc-r reference syste=s,,. If we represent

the linear polarization vector with (hx ,h y), and the

circular polarization vector with (hr hZ) as its tight

and left circular components, respectively, then the

Miiwy &-y



PAGE 46

relations betwesn the scattered fields in the two

polarizations are given by (Long 1966)

hv =(h4-jh ), h = j(hx-jhy) (3.25)
x y r x y

The scattering matrices for the two polarizations are

related through the formulas

C, = li(Sxx-Syy)+JSxyl Sxy-Sy

c0 r -j(s +S ))I, C •r- (3.26)
Zrxx y~y Zr .

Orr = L*(Sx-Syy )-JSxy

wheve the C are the elements of the scattering matrix

ij

with respect to the

circular polarization basis and S are the corresponding
I' ij

elements with respect to linear polarization basis.

3.4 Scattering Matrix Transformation Invariants

S3.4.1 The uniLary transformation matrix [Ti

Assuming reciprocity holds, there exists an infinite

"number of general pairs of orthogonal elliptical

polarization basis vectors'h hB and an infinite number

of possible invariant transformations. Numerically, the

transformation proporties of the scattering matrix [S(A,B)]

(assuming no polarization losses) from one orthogonal pair

h -- h + h h (3.27)
ante AA BEB

to another orthogonal pair

h = h + h h' (3.28)
- AAt <

... .. ....
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can be transformed to another new scattering matrix

[S'(A',B')] by using a unitary transformation matrix [T].

This matrix [T] relates the polarization vector components

in the two orthogonal basis sets (A,B) and (A',B'). To find

the matrix [T], the orthogonality relationship between the

components of each of the two orthogonal basis vectors

should be used e.g.

A A*

hiOh% =j ij (3.29)

where 6 is the Kronecker delta functionlLI

(6i=lijJ6i.=0,ij) and (i,j) may be equal to A or B

in the first basis set and A' or B' in the second sat.

From (3.27) to (3.29), we have

A 6 1
s'hA =hA hA (ha •hA) + hB'(hB"hA ) (3.20)

and

h'• = = A'(hA'B (B")BB31
hh h h 1 h 1 + hB'(G'h (3.31)

By rewriting (3.30) and (3.31) in matrix form, one has

h A"h AhA h B A hA

(3.32)

or,

h(A,B) = [T] h(A',B') (3.33)

where

*A *7;
A hA hB hA

[T] = (3.34)AY shA, B h B 'hs*B

C -

[1*
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To determine the matrix [T], the relationship between the

two sets of the orthogonal basis vectors should be known.

For example, let

IA a 1A + 2ýB (3.35)

and

hB = 0lhA + a 2 hB (3.36)

These two new unit vectors h in the orthogonal

A' B

basis (A',B') should satisfy the orthogonal]ty relationship

of (3.29). For (3.29) to hold, tha following must be met

aI1I2 + cc l2 = I, (3.37a)

II2 + 2(.3b
2 + 21 I -, and (3.37b)

* *

a + 22 = 0 (3.37c)

By substituting (3.35) and (3.36) into (3.34) and using

(3.29), the matrix [T] can be written in the form :

[T] (3.38)
2 52

This means that there exists an infinite number of

unitary matrices [TI given by (3.38), which satisfy the

conditions (3.37). For example, if we choose

* *

1 = "L2 52 = al (3.39)

which satisfies (3.37b & c) provided that (3.37a) is

satisfied, Eq.(3.38) yields

Al ( ....

.,, ... .. • ,. ,. •.. .._. _ ... . . • ... _=.•.} a •• ,.•.L • ;j- •',, . ••. .• .. •
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(T]= (3.40)
2 i* -

Let a and a be defined by a complex parameter p and
1 2

its complex conjugate p such that the conditions (3.37)

are satisfied. For example, one can write

!P

"1 p =2

la anda 2 = so that, p- (3.41)

•, +PP ;, pI
then :

[T] - (3.42)

I+p I I

In case no polarization transformation losses are

incured, the matrix [T] in (3.42) is a unitary matrix since

it satisfies the condition

[T-1] = [TT (3.43)

3.4.2 The scattering matrix in the new basis [(S'(A',B')]_:

Using the unitary transformation matrix [T] in terms of

*
the complex parameters p and p given by (3.42), one can

obtain the scattering matrix (S'Q('I,B')] in the new basis

(A',B') in terms of the elements of the original scattering

matrix [(S(A,B)] and p, p

We now rewrite (3.33) for the incident and the scattered

polarization vectors separately. Thus

- -"
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h (AB) = [T] hi(A',B') (3.44)

and

hS(A,B) = ]hS(A',B') (3.45)

We use [T ] instead of [T] in (3.45) in order to preserve

the same sense of polarization with respect to both

coordinate systems of the incident and scattered radiation

(Graves 1956, Maffett 1968). From (3.45)

hT(A',B') [T*IlhS(A,B) = [TT]hS(A,B) (3.46)

Using (3.21) and (3.44) one has

,, (A,B) [S(A,B)]hi (A,B)

_

( S(A,B)][Tlh (A',B' (3.47)

Substituting (3.47) into (3.46), we obtain

sI

h(A',B') [TT][3(A,B)][Tlh'(A',B'1

= [S'(A',B')]hi(A',B') (3.48)

where

iS'(A',B')] = [TT][S(A,B)][T] (3.49)

From (3.4-9) and (3.42), we obtain

S'AA = (l+pp*)-
tA'A' ) [SA+P 2SBB+P(SAB+SBA)]

soAB (l3-5)0)-*
'B= (+PP SAA+PSBB+SABPP (3.50)

S,, (lp*).l[-* *

= (1+PP ) -P SAAPSBB+SBA-Pp SAB

StB'BB (l+pp* - [*ZSAA +SBBP (SAB+SBA)]

Using (3.50) we find that the det{[S(A,B)I and the

span ([S(A,3)]} are transformation invariants (Appendix D),

according to

-Law-- 3
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det([S(A,B)]) det{[S'(A',B')]) = invariant, (3.51)

and

span([S(A,B)]) = ISMI 2 +jSABI2 +I SBAI +ISBBI 2  P

- span{[S'(A',B')]I

= !S'AAIl÷lS'ABI'+BS'BA' 2+IS'B,B,12

= invariant (3.52)

We note that, if S = S then S'AB BA' thn 'ABt = S'BtAI

i.e. , if reciprocity is satisfied for any one pair of

orthogonal polarizations, it is satisfied for all such

pairs. Furthermore, we must emphasize the important property

that for any one given aspect and for one frequency, the

transformation occurs on one and the same polarization

sphere of radius p = spanf[S(A,B)]) = span ([S'(A',B')]).

Thus,if [S(A,B)] is known, the new scattering matrix

[S'(A',B')] for any other orthogonal base (A',B') can be

determined if the relationship between the two sets of bases

(A,B) and (A',B') are known. This is shown for example in

the transformation from linear to circular polarization

basis vectors in (Long 1966). In case of polarization

losses, the properties of the coherency matrix need to be

used (Kraus 1966), and transformation will not occur on the

same polarization sphere (Deschamps 1951), as is discussed

in (Thiel 1970) and will be further analyzed in one of our

forthcoming reports.
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3.5 The Optimal Polarizations

It was first shown by (Kennaugh 1949-1954), that there

exist two pairs of optimal polarization which can be

associated with (3.50) and are useful to express the five

independent real components of the scatte-ing matrix [SI in

the monostatic relative phase case on the polarization

spheia of radius p subject to (3.52).

The CO-POLARIZATION (COPOL) NULL PAIRS for minimal

polarization are obtained from (3.50) by setting S'

and/or S'BB, to zero so that in the bistatic case

""(SAB+SBA)± ((SAB+SBA) 2 "4SSBB

P 1 (3.53)
2 SBB

reducing for the mono; ::tic case to b

"SA B± AB "AASBB

co (3.54)
SS

AABB

The CROSS-POLARIZATION (XPOL) NULL PAIR for maximal

polarization is obtained from (3.50) by setting S'AB, or

:.t B'to zero so that in Lt&e bistatic case

?-i± 142-4ac

1,2 (3.55a)

2a

where

* *
a = SBBSBA +SAA SBA

* *

b {ISBBI 2 -SABSBA +AB SBAISAAI 2 }

c = -(SBB SAB+SAASAB*) (3.55b)
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* reducing for the monostatic case to

b = -(ISBBI 2 _-SAAI 2 ) and c - -a (3.55c)

If we let, in general

l-jp
U= (3.56)

1+jp

with p being the transformation parameter defined by

Eq.(3.50), the coordinates resulting for (3.53) to (3.55) on

the Poincare sphere are given by

uI -2

Colatitude 8 arccos (3.57)

Im(u)

Longitude :' =-arctan =-phase(u) (3.58)
Re(u)

On the basis of these expressions, examples of calculations

of the optimal polarization pairs for radar targets and

clutter are given in Chapter Four. It should be noted, as

is illustrated in Fig.(3.14), that for the monostatic case

the XPOL and COPOL nulls lie on one main circle, " At the

XPOL nulls are antipodal, and the connecting line bisects

the great circle arc between the COPOL nulls. This means

that, if we determine thA COPOL nulls, it is easy to find

the location of the XPOL nulls but not vice versa. Also, if

one XPOL null and one COPOL null are given (e.g. byI

measurements), the location of the other two nulls can be

found. By using the COPOL null polarizations, the scattering
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0• C07POL NULL
X XPOL. NULL

Fig. 3.14 :The Polarization Fork (Huylien 19-70).
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matrix can be graphically represented by two points on the

surface of the Poincare sphere of radius p. The coordinates

of the scattering matrix or of the target signature and the

radius of the sphere represent the function of the target

reflectivity, and in principle contain the same information

as [S] for the monostatic relative phase case.

Details of the intrinsic properties of the optimal

polarization nulls on the Poincare sphere will be discussed

in one of our forthcoming reports together with the analysis

of model generated and measurement data.

3.6 The Stokes or Mueller Matrix and its Relationship with

the Scattering Matrix-:

Whereas, in the coherent case the elements of the 2x2

Sinclair matrix [S(A,B)] are additive, in the incoherent

case, the time-averaged Stokes parameters of the 4x4 Mueller

matrix are additive. The Mueller matrix [M] relates the

scattered and the incident Stokes vectors in the following

way

8 s(A,B) = [M]g i(A,B) (3.59)

where the Stokes vector a = (go,g 1 ,g 2 ,g 3 ) =

(I,Q,U,V) is given by (3.9) in terms of the phasors of its

corresponding polarization vector

A A
h = h hA +hBhB (3.60)

Similarly, the modified Mueller matrix [Mm] relates the

modified scattered and incident Stokes vectors through the

equation
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S_'(A,B) [Mm~gMi(A,B) (3.61)

where = (J(I+Q),j(I-Q),U,V) given by (3.11).

In the following sections we will, as given by (3.1.),

derive the relationship between the matrices [M], [Mm] and

[S]. In the first subsection, the derivation of the elements

of [M] and [Mm] from [SI is given, while in the second

subsection, the inverse problem, i.e., the derivation of the

elements of [S] from [M] or [Mm] is solved. Also the

relation between [M] and [Mm] is given in the third

subsection.

3.6.1 Derivation of the Mueller [Ml or Modified Mueller [Mmi
Matrices from the Scattering Matrix [S]

a) Derivation of the Mueller Matrix [M] from the scattering
matrix [SI

The scattering matrix [S(A,B)] is given in the orthogonal

basis (A,B) by (3.22) which in the bistatic case has four

complex quantities or it possesses eight real quantities for

the absolute phase case. The complex quantities are SAA,

SAB' SBA and SBB ,while the real quantities are

Is AAI' ISABI' 'SBA"' 1SBB'' 0" AB' OBAI

*BB' In the monostatic case, we have SBA = SAB or six

real quantities ISIAA, ISABI, ISBBI, AA' ABO

OBB because ISBAI = "SAB' and OBA = OAB" In this

sec'ion the elements of the Mueller Matrix [M] for both the

bistatic and monostatic cases are derived from the elements

of the scattering matrix [S(A,B)], as shown in Appendix (E)

ij
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i) Bistatic Case

m = ,2S 2 1S :+I 12 +IS 12)
"11 ½l{SAAM I+SBA' SAAB SBB

m 12 = *ISAA[I+ISBAI 2 -ISAB II-ISBBIJ1

* *

13- Re(SAAS +SBASBB }

* *

m14 = Im(SASA +SBASBB }

m2 1 = f(ISLA"I SBAIZ+ISABIz - SBB. )

m22 •(ISAAI 2- ISBA 2-i SA2+ISBB1)

mi2 3 = Re(SAASAB S BAS BB

24 AA AB BA BB

m 31 I=n{SAASAB +SBABB (3.62)

* *

m3 = Re(SAASBA +SABSBA B
* *:

m 34 = IR(SAASBB "SABSBA B

* *

m34 1 = R IM(S AAS BA } ABSBB

m342 = IM{SA BB "SABSBA }
m 43 = - IM{SAA SBB +S AB SBA

ii) Monostatic Case

m W= 12 +21SB "SAB2 +iSBB }

m&3 = I(SA 2 ISBB + 2 )

m e( +S S
13 = Re(SAABB ABSBB

i£) Mnosrtic aseI
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m14 :zIm(SAASAB +SABS BB

m21 M 1 2

m22 = W(JSAZ+ISBB 12,-ISAB 12

023 = Re(SSAA SAB SBB )

m 2 4 = Im(SMAASAB SABSBB )

031 = 13

m32 M 2 3

*)SS +Ism33 Re(SAASBB*+AB'

m34 Im(SAASBB*}

m41 -m14

m42 = 24

m43 -m34

m44 = 33+M 22-M (3.63)

In this case, we have a maximum of seven independent

elements. We note from (3.62) and (3.63) that, all elements

of the Mueller matrix [M] are real.

b) Derivation of the modified Mueller matrix [Mml from the

scattering matrix fS]

Using the definition of [Mm] in Eq.(3.61) and of &m in

Eq.(3.11), the elements of the modified Mueller matrix [Mm]

can be obtained directly from the scattering matrix [S(A,B)1

(Appendix F); thus for the bistatic case, we obtain

-_ j A .--
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AA SAB 1 e AB {AAAB

[M M ]1SBA I' IBB I R B B A SB B J I ( BA SI3B

2Re(SAASB* 2Re(S S Re(S S +S S* I(S S* S SAA BA 2 eABBB AA BB +ABSBA AA BB ABBA
" "{AASBA) -ISABSBB ) I(AASBB +ABSBA Al eSAB B "AB BA

(3.64)

and for the monostatic case we only have seven independent

elements, since

M21 = M12, M3 1 = 2M1 3, M4 1 = -2M 1 4, M3 2 = 2M23 ,

M42 = -2M 2 4 , M4 3 = -M3 4 and M4 4 = M3 3 -2M1 2

3.6.2 Derivation of the Scattering Matrix [SI from the

Mueller [MI or Modified Mueller [Mm] Matrices

Since it is useful to characterize clutter behaviour by

its optimal polarization properties, it is desirable to

express the amplitudes and the phases of the scattering
matrix elements SAA, SAB) SBA and SBB in terms o,f

the elements of the Mueller matrix elements mij or of the

modified one denoted here by Mij.

a) Derivation of the scatuering matrix [S] from the Mueller

matrix [Ml_:

As shown in Appendix (G), for the bistatic case; the

amplitudes of the elements of the matrix (S] are given in

terms of the elements of [M] by

Is Al =If '(mll+-1+m21+•22)

ISABI J/j(m1 1 -m12 +m21-m22) (3.65)

iS BAI = 1 2-m21-M 22)

BR Ai 12 21 22~
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and their phases by

m14+24

OAA = AB +arctan

m 13+M23

OAB is arbitrary (=O)

W14 " 2 4  m41" 42

ABA =@AB+arctan +arctan

M 13 " i 2 3  m 3 1 " 32

i 4 1 i 4 2

'#BB *AB+arctan (3.66)
m 31"m 32

which simplify in the monostatic case so that

ISAB! = ISBAI and OAB = OBA'

b) Derivation of the Scattering Matrix [Si from the Modified

Mueller Matrix [Mm] :

Similary for the case of the modified Mueller matrix [Mm]

as shown in (Appendix H), we obtain for the bistatic case

M 14

I S AAI = F , OAA = OAB+arctan

M13

ISABI = VM'2 ,AB is arbitrary (=O)

M34 +43

Is / BA = *AB+arctan (3.67)

M -M33 44
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M 42

I s B B ' 1  M 2 2 / OB B * A B + a r c t a n - 3
M3 2

which for the monostatic case simplifies so that

ISABI = ISBAI and B *BA"

3.6.3 The relation between the Mueller matrix [rM and the

modified Mueller matrix [Mm]

For completeness, the relationship between the Mueller

[M] and modified Mueller [Mm] matrices is derived in this

sention. Rewriting (3.59) and (3.61) which defines [M] and

[Mm] matrices as follows

a (A,B) = [M]gi(A,B) (3.68)
si

§m S(A,B) = [Mm]_g i(A,B) (3.69)

where • = (I,Q,U,V) is the Stokes vector which is defined in

Eq.(3.9) and -m = (½(i+Q),J(I-Q),U,V) is the modified

Stokes vector. From the definitions of • and

one can get the relaticn

gmm(A,B) (Q) ½-i 0 0 (3.70)
u 0 0 1 0 u
v L 00 0 1 vi

or g (A,B) = [R]g(A,B_ ) (3.71)

wbere

[R] [- 0 0 (3.72)

0 1
0 0 0

From (3.71), we can write

Sm3(A,B) = [Rlg 5 (A,B) (3.73)
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From (3.73) and (3.68), then

A (A,B) = [R] gs (A,B) [R] [M] g~ (A,B)

[R][M][R !g (AB) (3.74)

where [Rl] is the inverse of the real matrix [R] of

(3.72) which can be written as

(Rl] 1 -1 00 (3.75)
00 10

L o

From (3.69) and (3.74), one can write

(Mm] [R][M][R"] (3.76)

or

[M] [R ][Mm][R] (3.77)

In summary, the relation between [M] and (Mm] is derived

and is given by the pair of (3.76) and (3.77), where [R] and

[R"] are given by (3.72) and (3.75), respectively.

3.7 Reconstruction of the scattering matrix [S] and the

Mueller matrix [M] from the optimal polarizations known on

the Poincare sphere

In this section the reconstruction of the scattering

matrix [S] and the Mueller matrices (M] and [Mn]is derived

assuming that the COPOL null pair or one COPOL and one XPOL

polarization null are given. It will be shown that knowing

only the XPOL null pair is not sufficient to reconstruct

these matrices as expected. To solve this problem,we have to

" , -- 'r -' • • .• ': .. .. - • '', • . .. . •" •" •' • .:•': . '.w• !• .• '" :,L " ' , •'' •' "'• •-' "•:"' ••J,_•:,• "I
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use the equations in the previous sections of this Chapter.

The problem now is:given two polarization nulls,either two

COPOL nulls or one COPOL and one XPOL null but not two XPOL

nulls, such that their representation on the Poincare sphere

are given by (p,8 1 201
1 ) and (P, 2 ,02'), where

p=span([S]) is the radius of the Poincare sphere, B is the

colatitude and 0' is the longitude. Then, Skt is required to

reconstruct the scattering matrix [S] with relative phase

and similarly the Mueller matrices [M] and [Mm]. First, we

have to calculate the auxiliary parameter p which is

mentioned in Section (3.5) from knowing 8, *' at any

polarization null. Using (3.56), one can get

1-u
P = -j (3.78)

l+u

where u is a complex number and it can be calculated using

(3.57) and (3.58) as follows

/l+cos 8

U = e (3.79)
1-cos8

where (8,0') is the coordinate of one of the polarization

null on the Poincare sphere. This means if (8,0') is known

for such a polarization null, its corresponding complex

parameter p can be calculated using (3.78) and (3.79). Next,

we will calculate the scattering and the Mueller matrices

from the optimal polarizations.

3.7.1 the COPOL null pair is known

Let the COPOL polarization null pair

co co d Co co
(p,8 1  ,•01°) &id (p,02 0,2 ° be given,

where we know Irom Section 3.5 that p=span([S]}. By using
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(3.78) and (3.79) we can calculate the corresponding complex

Co Coparameters p1  P p2  . Each of these parameters

should be a root of the first equation of (3.50). This

implies for the monostatic case :

SAA+ CO )2SBB+2pIc° SAB = 0 (3.80)

and

SAA+(p 2 c°)2SBB+2P2c° SAB = 0 (3.81)

where SAA, SAB and SBB are the elements of the

scattering matrix [S(A,B)] in the orthogonal basis (A,B).

From (3.80) and (3.81), one can calculate two elements of

the scattering matrix in ter,,s of the third one. For

example, solving both equations to calculate S AA SBB in

torms of SAB, one can write

CO CO

"..2p1 P2

sAA = AB (3.82)

PiCo +2co
p1 i+p 2 °

and

-2

SBB SAB (3.83)

then the scattering matrix can be written in the form

CO CO
2p, c p2

1
Co CO

2Pl P2
[S(A,B)] = 5AB -2 (3.84)

Co Co
Pi +P
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Now we have to calculate SAB, where by using (3.52)

is AAI12+21SABIl+SBB" = p = span{[S(AB)]) (3.85)

We substitute (3.82) and (3.83) into (3.85), then

IsAB =1 (3.86)

•"fT co+ PCOo 2+21
0 p2 C0 l *+

The absolute phase of SAB cannot be reconstructed from the

knowledge of the optimal polarization pairs as was clearly

shown by Kennaugh(1952). The scattering matrix with relative

phase only can be reconstructed.Letting OAB=0 then

SAB=IsAB1. Substituting from (3.86) into (3.84), one can

write the reconstructed scattering matrix [S] with relative

Co Cophase in terms of the COPOL null pair (p P2  ) as

follows

[S(A,B)j= K (3.87)

where 2 +2 }Ic

= t +, 2 I.COop O 2 i,+21p, P2 co 1O2421
CO CO

a -2p 1  p2  exp(-JOE)'

b = I plc°÷+p2c°

c = -2exp(-jOE) and

E= phase(P 1c°+p2 c)
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3.7.2 One COPOL and one XPOL null are known

Let (pj°p. ) p . nown on the Poincare sphere of

radius p, where pi° is any COPOL null, i=1 or 2 and

x Co
pi is any XPOL null, j-I or 2. pi should satisfy

I x
the first equation of (3.50) and pj satisfy the second

one TI ' eans

SAA+(pic°)ISBB+2pic° SAB = 0 (3,88)

and

"(Pj X )SAA+pjXSBB+SA8(lIP X1) " 0 (3.89)

mulitply (3.33) by (py)* ,and add it to (3.89), then

2p 'o, ,, pjX12+1

SBB -3SAB (3.90)

(Pj) (Pi ) +Pj
Substitute (3.90) into (3.88), then

P.co P COpX 1 2 -2 p.x

CO (3.91)SAA • AB Pic°(.1

(pjyX)* (p iCO)2+px

Usiig (3.90) and (3.91) and (3.85), then we can writl.:

Is ABI - 1)/D (I(Pj X)(pic°)14'pjx 1 (3.92)

wL~ere

U 21(pX)* 0O)2+PX 1 2
,' ~ ~D z (21(pj ) .Pi ) .•.;

+1 pCO 1 21 r 0 lz.2 12-

+j [2piCpj)* -I pXj+l]l1) (3.93)

From (3.90), ( 3 . 9'L) and (3.92), we can write the scattering

matrix with relative phase (0AB=0) as following
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p a b

[S(A,B)] = (3.94)

where

D is given by (3.92),

co= p c°[ o-p clpjxj2-2pjx,,'j#E
a = PiPC Pjip jzX E
b I(W. ~ CO.a~X

b- = (pj X) *(Pi o)2+pj [

d = [2 C (PX)* -pj 1 2+ 1 ]j

E= phase of [(PjX)*(Pi O)2+pjX] (..95)

3.7.3 The XPOL uull pair is known-:

Let (p 1Xp 2X) be the XPOL null pair, then each

value should satisfy the second equation in (3.50), where

"(p 1 ) SAA+pl SBB+SAB(l pl (p1 )*] = 0 (3.96)

and

"(P2x)SAA+p2 X SBB"'SAB[ l-p2X (P2X]= 0 (3.97)

Multiply (3.97) by plx and subtract the result from

(3.96". after multiplication by p2 ) then

jrr X ~ XXX X, X

S"P2 "(P I*+p i(p2) IS"A

S+SAB[Pl+P2x+P2 x P +P2 X. p2 x (Plx)*] 0 (3.98)

Using the relation p 1X~p 2 j 2 =( p2 = -1 =

i.e. the property of the XPOL nulls to be antipodal,

--~- -,, -. -- -



which can be derived easily from (3.55a) and (3.55c).

Eq.(3.98) will vanish for any value of p, and p2x.

This is also true when one tries to calculate S in term
BB

of SAB* This means the scattering matrix [S] cannot be

determined by using the two XPOL nulls as was previously

established by Kennaugh and shown also in Huynen (1970).

In summary, the scattering matrix [S] with relative phase

at fixed aspect and at a given frequency can be

reconstructed by using (3.87) for the case in which the two

COPOL nulls are known, and by using (3.94) for the case in

which one COPOL and one XPOL null are known. We note here

that [S] cannot be reconstructed if only the two XPOL nulls

are known. After calculating the scattering matrix [S], one

can calculate the Mueller [M] and the modified Mueller [Mm]

matrices in the monostatic case using (3.63) and (3.64),

I
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CHAPTER FOUR

NUMERICAL RESULTS

4.1 Introduction

In this Chapter, we will use the theory of Chapter Three

to calculate the two unknown matrices given either the

scattering [S], the Mueller [M], or the modified Mueller [Mm]

matrices for different targets and for sea clutter. We will

concentrate on the monostatic relative phase case for the [S]

matrix. It should be noted that, the bistatic case also can

be calculated by using the formulas of the same Chapter.

Also, the COPOL and XPOL nulls, at a given aspect and fixed

frequency, and their representation on the Poincare sphere

for each case are calculated. It should be noted that, for

calculating the scattering matrix (S] from the Mueller

matrices [M] or [Mm] in the monostatic relative phase case,

only seven elements from (M] or [Mm] are needed, e.g. mll,

m 12 , m 13 , i 14 , m2 2 , m2 3 and M24 as was shown in

(3.63) and (3.64).

4.2 Targets with Simple Shapes (Huynen 1970)

Example(l) : Large metallic sphere or a flat plato.:

In this example a large ideally conducting sphere or flat

plate at normal incidence is considered. The target shtipe is

shown in Fig.4.1. The scattering matrix is given by

IS],

li 'j* I
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the Mueller matrices are given by1 0 0)
[M] = [Mm] 0 1 o

Optioal polarization (Fig.4.2)

a. COPOL nul's :

p1  , aIco1 arb.

"P2  -is a = 1800, 12 c arb.

This means the COPOL nulls lie at the North anc! South poles.

b. XPOL nulls :

They exist anywhere at antipodal location-i on the Equator

(8=90 major circle).

In this example, if the polariza.ion of the incident wave

is lft circular then the return signal will be right

circular and vice vursa. This means if both the radar

transmicting and receiving antennas are adjusted to use

left(or right) circular polarization, then tv - receiver will

receive no (or minimum) return signal from the target. Also,

the received return --ignal will be maximum if both antennas

are using the same lii*ear polairization.
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XIVX2

Fi&. 4.2 : COPOL and X(POEL nulls for a metallic sphere or flat

--- plate.
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Example 2: Metallic trough: (Fig.4.3)

The target in this case is a large metallic trough (two

planes intersecting at 900) oriented with axis ,the plane's

line of intersection) horizontal or vertical. The view angle

is considered normal to the trough's open surface. This

target has a two-bounce reflection characteristic. The

scattering matrix is given by (Huynen 1970)

IS] [ = - 1 0and the Mueller matrices are

10 -o

0 0 -1

Optimal polarizations: (Fig. 4.4)

a. COPOL nulls

co = 1 co g co -90o

co . ~ 8 co _O.._ 90o Oo

P2 c= a 2 002 C g0oo

b. XPOL nulls

They exist anywhete at antipodal locations on the major

circle 0 = 00.

NOTE : In comparision with the sphere results of Example 1,

we note the important difference, in phase of element SBB

for Example 2; i.e.; the relative phase relating the two co-

polarizad elements -is of paramount importance.

I !
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IzI

Fig. 4.4 CPLandXO ul o metallic Trugw(iyen190)

" , LftU
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Example 3 A metallic helix with right screw. (Fig.4.5)

The scattering matrix in this case is given by (Huynen

1970)

-i
the Mueller matrix is

0 00

0 0 0 o
-1 -0 0 -1

anid the modified Mueller matrix is given by

[MM] =j 0.5 0.5:

Optimal polarizations (Fig.4.6)

a) COPOL nulls

PiC CO "J, alCO = 1800P CI arb,

CO= j, 8 180 2 arb,

The two COPOL nulls lie o" the nadir.

b) XPOL nulls-:

p = j, 81x 0 001 X arb,

"" = 180*, 02x arb,

one XPOL null lies on the zenith and the other on the

nadir.
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rI

Fig. 4.5 A metallic helix with right screw (Huynen 1970).

Fig. 4.6 :COPOL and XPOL nulls for a right screw-metallic helix.
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Example 4 : A metallic helix with left screw. (Fig.4.7)

The scattering matrix for a metallic helix with left screw

is (Huynen 1970)

the Mueller matrix is given by :

[M] = 0 0 01
1000 0

-10 0 1"

and the modified Mueller matrix is

[Mm] = 0.5 0.5 0 -0.5
0 0 0o 0
1 0 -10

Optimal polarizations (Fig.4.8) :

a) COPOL nulls

co ,1co = 00 1 co arb,

Po = J, 98co = 0o0, Go arb,

The two COPOL nulls lie at the zenith.

b) XPOL nulls-:

Pi X = = 1800 €Ix arb.

X =X arb,• P~2 = 2 ' 2 a

One XPOL null lies on the zenith while the other on the

nadir.

L~
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Fig. 4.7 A metallic helix ''tt:.pr: s'.~r,-w (Huyr.3n 1970).

Fig. 4.8 :COPOL and XPOL nulls for a metallic left screw.
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Example.5 :Linear target oriented by an angle * to the

horizontal (x-axis) (Huynen 1970)

The target model is shown in Fig.4.9. The scattering

matrix is given in terms of the. angle # by
Fcos2* 

sinocos*]
SLsin, cos* sin2 *

The Mueller matrices are calculated using (3.63) and (3.64)

by

1 cos2q, s in2tp 0
S[M(4)] = cos2;P cos22* 2 sin4, 0

Ssin2,p *sin4* 2i 0
S 0 0 0 0

L
COS* isin 22tl' cos24,sin# 0

[Mm(4)] isin 2 20 sin"4 sin3 ocos* 0
2cos24sinip 2sin'ocosp isin22* 0

L 0 0 0 0
Optimal polarizations

a) COPOL nulls

PlC°=Pc=-cot, 1co=8 2 c° =900) ico=2 co°=20±w

b) XPOL nulls:

p1 x=tan*, p2 X=-cottp, 0 1x=8 2x=9 00 , 0=12x=20

Special cases :

Wi) The target is aligned horizontally_(O=0)

fS (0=0)] 1 0 0

Plco '2co a1coe2 co =90 1co= co=1

Pi X'°p°=2 X, 8 1°=w2 c=900, 01c°=02c°=O
lX=O 61x-• 8=82x9, l=2O

The Co-Pol and X-Pol nulls are shown in Fig.4.10.

(ii) The target is aligned vertically (0=90) :

[S(0-900)] = [

I. .........



PAGE 79

P1 co=p 2co•0 8 1C°=8 2c=90O, 01 C=O2 c°=0

PiX pX=2;O 8 1 x=ezX=9002, 01x=02X=1800

The COPOL and XPOL nulls are shown in Fig.4.1.

(iii) linear target with 4--45:

P i°= ZC=P2 I, 1 i=82c°=90 ,0 01 C=02 z=2700

P lx-P2x =, a 1 X=e 2 =go*, 1 X=02 x=900

The COPOL and XPOL nulls are shown in Fig.4.12.
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Y

Fig. 4.9 Linear Target jI

cII

1

Fig. 4.10 COPOL and XPOL nulls for Pig. 4.11 CopLa horizontal linear target. IZ for an verOa linartarst

Fig. 4.12 COPOL and XPOL nulls for a linear target witht=45
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4.3 Targets for more Complex Shapes (Crispin et al 19611

Three targets for more complex shapes are taken into

consideration in this section. The data are taken from

(Crispin et al 1961) for three target models :missile with

and without fins, and the nose cone model. The measured data

for the radar cross-section and relative phases are shown in

Table(4-1). The radar cross-section were measured relative to

a conductiag sphere. The geometry for the cross-section study

used in The University of Michigan, Radiation Lab. Report

(Crispin 1961) is shown in Fig.4.13.

- rRCS in D55 Relative to IFhase5 in grees
Target Aspect Shrp Re.tU70 Sphere

Nose Diamete

Cone 2.60 3.6 -16. 2.8 128,08 121.002 2.945"

Missile
with 300  -9.3 -20.5 -0.8 98.600 159.3. 1.98
Fins ' I __ _ _

MissileI
without 180' 5.9ý -30.0 6.3 3I4.53 35.0* 1.98Ii.

Fins

Table 4-1: Experimental data for RCS (Crispin et al, 1961)

The frequency is 9.7 GHz and the range R=361ft. for the

nose cone target model and R=33ft. for the missile model.
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Z'-

rI

S• To
Radar

Fig. 4.13 : [ermetry for cross section study (Crispin et al 1961).

I!
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Examp1 (6): Nose cone model

The geometry of the model is shown in Fig.4.14 and the

scattering matrix relative to the sphere with diameter 2.945

inches at aspect angle 260 is given by

-0.452+JO.579 0.760xl0"]
[S] = 0.760x10 -0.345+jO.574

the Mueller matrix is

0h5 0.45axl0 -1 -0.606xl0 0.35xl0" 3

[M' 0.454x10 0.488 -0.815x×0" 0.877x10"

-0.606xl0"I -0.815X10"2 0.494 0.6x10"

-0.35x10"3 -0.877x10" -0.6x10 0.483

the !i, d Mueller matrix is

r 0.54 0.578x0 -2 -0,344x " 1, 4x-"

[Mini 0.578xl0 -2 0.449 -0.2621,i10 -,.437x1O0

.-0.688xl0" -0.525xl0" 0.494 0,6xl0"1

0.88x10- 0.873X10 -0.6x10''l G-,483

Optimal polarizations : (Fig.4.15)

a) COPOL nulls

co co CO=p1  =0.1168-jO.9504, 8°1 =172.570, °=70.4380

p2c =0.1159x10"3+J1.1450, 8 c° =7.7360 2 C=179.9570

b) XPOL nulls

p 1X=0.5005+jO.2889x10"2 01 x=89.735) 1 ix=-53.1770

P2 =1.9979-j0.1153x10•, a 2x=90.265°, 02l=126.8220
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13°0 __ /

4. 15"

/770

1.207"1

.~.21 0

0.9

U. (i"

3. 215"----

Fig. 4.14 :,Nose Cone Model (Crispin et al 1961)
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z

C2  /

F . 4nn

Fig. 4A.a5 :COPOL an~d XPOL nulls for a nose cone. model.
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Example (7): Missile model with fins

The geometry of this model is shown in Fig.4.16. The

scattering matrix is calculated from Table 4.1 at aspect

angle 300. The calculated scattering matrix is given by

(relative to a sphere with diameter 1.98")

-0.521xi0 1+jO.345 0.96x10- 1-

IS] [ 0.96x10" -0.863+J0.328j V
also, the Mueller matrices are given by

0.5 -0.369 -0.883x0" 0.161x10 2

[M] -0.369 0.482 0.783x0" 0.646xI0"

-0.883x10"I 0.783x10"1 0.167 -0.282
-0.161x12 -0.646x0" 0.282 0.149

-- 20.121 0.922xi0" -0.5xl0 0.331x10"I

[Mm] = 0.922x0"-2 0.86 -0.833x0" -0.31xi0
-1

-0.lxlO -0.167 0.167 -0.282

--0.662xi01 0.629x10 -1 0.282 0.149

Optimal polarizations (Fig.4.17)

a) COPOL nulls t

co co Co=p1  -0.2212-jO.4898, 8e1 =139.4670, 1°-31.8890

P2 Go0.4149+jO.563, a2 =40.87702 CO=58.3780

b) XPOL nulls-:

i pX=.8.4809+j0.1551, 0 1 x =8 9 . 7 5 60 , 01x=-166.5550

P2 =o.1179-jO.2156, 8 2 X=90.2440, 02=13.445*
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Fig. 4.17 COPOL and XPOL nulls for a missile modal. with fins.



PAGE 89

Example (8): Missile model without fins

The geometry of this model is the same as the last one but

without fins (Fig.4.16). The scattering matrix is calculated

from the data given in Table 4.1 at aspect angle 1800. The

calculated scattering matrix relative to a metallic sphere

with diameter 1.98" is given by

O.569+jo.391 Q.111xO1
[S] 0.111xl0" 0.592+jO.415

and the Mueller matrices are

0.5 -0.23xl0" 0. 129x10 1  -0.261xl0-3

-3 -2[M] = -0.23xlO 0.5 -0.:t57xiO 0.892x0"

O.129x10" -0.257x10" 3  0.499 -0.436x10" 2

0.261xi" 3 -0.892x10"2 0.436x10"2 0.499

F0.477 0.123xi0"3 0.63x10"2  Q.433xlO-2

[Mm] 0.123x10" 0.523 0.656xi0 -0.459x10"2
O. 126xi0 " 1 O. 131x lO " 1 0. 499 -0. 436x I0 "2

-0.866xi0"- 0.918x10 2  0.436xlO-2 0.499

Optimal polarizations (Fig.4.18)

a) COPOL nulls

C~o=- C co=-0.1669x10 -jo.9684, 81c°=177.9210, = -28.3350
P0 1 co1 ~2

CO=-0.839xi0" 1+j.O.986, 82 c=0.9340, c2°-31.120

b) XPOL nulls-:

Px=3 8 3 7 -. 0 0 7 8, 1x=90.5680, ix=150.796*

x. x =-0 . 2 6 05 +j0. 5 2 9 8 , 2 x=8 9 . 4 3 10 , 2x= 2 9 . 2 040

L . . .. .
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Fig. 4.18 COPOL and XFOL nulls for a missile model without fins.
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4.4 Sea clutter

Example (9): Sea clutter and noise : (Fig.4.19)

The data of this example is taken from (Daley 1978) in

which he based his calculations for the sea clutter

scattering matrix on (Valonzuela 1968). The parameters in

this case are given by

a) dielectric constant of the sea water =70-j70

b) wind velocity =10 M/sec

c) tilt angle (for slightly rough surface) =40

d) depression angle =100

e) aspect angle =1200

f) propagation constant =68.300

g) noise level =-89.ldb

the scattering matrix is given by O

O347x101 +jO.206x101  0.686x10 +jO.737x10
w [SI= O.686.1O 1 +jO.737xlO" 3  0.951+jO.291

where according to Section 3.6.1

0.5 -0.494 0.679x0" -0.179xY10 1

[M] = -0.494 0.491 -0.631x0 " 0.206x10

0.679x i0 _0.631x 0 - 0.436x i0 0.946xI0 2

0.179x10I -0.206x i0 0.946xi0 0.342x 1 "a n d-

. 162x1 0 " 2 0.471xI0 "2 0.239x10 "2  0.138xI0 "2

S[MMI = 0.471xi0 2  0.989 0.655xi0 " -0.193x i0

0.479x i0 " 2 0.131 0.436x10I1  0.946x 10 "2

-0.277x10 "2 0.385x10 "1 -0.946x i0 "2  0.342x10 I1

Optiral polarizations : (Fig.4.20)

a) COPOL nulls :

p1 C°=-0.3436xlO 1-jO.1713, 6 cO=109.4140, C°=-4.0550

P2c°=-0.9805x10 1-jO.2102, 82 c=66.4860, 02c =-11.7080
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DIREC...iON OF
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Fig. 4-1.9 Geomeatry of~ a rough surf~ace.

A

z*

X2i

Fig. 4.20 COPOL and XPOL nu11_ý for sea clutter,
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b) XPOL nulls :

pix-13.6727-j3.6011, 81 x=92. 054 0 $ 01x=172.1720

1 1 1

p2 x-0.6839xl0 +jO.1801x0 0", 8 2=87.9460, 2 -- 7.-8280

Example (10): Sea clutter, target and noise

In this example, the conditions of the sea clutter and

system noise are the same as in the example(9) but a

simulated target is present and no target-clutter interaction

is assumed. The scattering cross-sections of the simulated

target arc given by (Daley 1978)

a%(target) - ahh(clutter)

aO (target) - ahh-3db

Ghvtag) = hh-l

and the phases are calculated randomly.

The total scattering matrix in this case for the same

parameters of example (9) is given by

.161+j0.69x• "I 0.257-jO. 171xlo
[s] 0.257-j0.17"ax10"3 0.817+JO.412

The Mueller matrix is

r0.5 -0.403 0.251 -0.884x10O1
[M] -0.403 0.368 -0.169 0.124

0.251 -0.169 0.226 -0.99x10 " 2
884x10"1 -0.124 0.99x10"2 0.935x-10"

The modified Mueller matrix (Mm] is given by I
0,306x10I 0.662x1 0.413xlO 0.178x10" 1

[Mim] - I 662x10 1  0.837 0.210 -0.106

.3Z6x!O 0.420 0.226 -0.-990X1

-o.355xlO 0.212 0.990X102 0.935x10"
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Optimal polarizations (Fig. 4.21)

a) COPOL nulls

PiCco-O.1836-J0.2583, 8C1c° =118.00101 1cO=-22.2090

p2 °-O. 3182+j0.5 121, 8 2c-41-311° 2 c° -45.001°

b) XPOL nulls

p xi 3 . 13 8 5 -jil. 1 04 2 , 9 1X=-00. 5 4 3 0, 01X. 314 8 .0 6 20

p=2 -=.2835+j0.9975x10 a 82 79

In the above two examples,there is a difference in two

elements of the modified Mueller matrix, e.g. M31 and M 4

as compared to Daley's results due to a printing mistake in

Ishimaru's book (1978, vol.1, pp.35) and the correct elements

mhould t, according to Appendix (F) M 312Re(SAASB},

M4 1--21miS ASBA*}. In Daley's results, he used SBA

instead of SBA . Also, it should be noted that some of

the elements of [Mm] differ in sign with the ones mentioned

in (Ishimaru 1978) and (Daley 1978) due to the difference in

sign of gm3 in Eq.(3.9). Also, we noticed that, the XPOL

nullE are antipodal and they should lie on a major circle

with the COPOL nulls and bisect the arc between them. But in

our model example the XPOL nulls are shifed with very small

angles in both example which may be due to the fact that the

scattering matrix does not completely satisfy the relative

phase concept or due to some measurement errors which



PAGE 95

requires further analysis. For example, the scattering matrix

in the fixst xample has 0.62@ absolute phase and for the

second one 0.040. We emphasize here the potential use of

calculating the COPOL and XPOL nulls from measurement data

immediately during measurement campaigns for the purpose of

checking the accuracy of the measurements. This aspect is

further discussed in Section 4.5; and will be treated in all

detail in a forthcoming report.

X22
X11

Fig. A.21 COPOL and XPOL nulls for a simulated target and sea
clutter.

. ..,. .*+.' 
• ' • ,•.• .• : . ... . .,
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4.5 Discussions

The numerical investigation of some target shapes and sea

clutter has shown the feasibility of applying the theory of

Chapter Three to calculate the two unknown m•zrizas of the

three matrices (S], (M] and (Ma] if one of them is known. We

concentrated on the monostatic case only which is of specilic

interest here. It should be noted that, the scattering matrix

with relative' phase can be recorstructed frow [M] or [Mm].

There are seven elements required for calculating [S] which

are m*1l m1 2 , *3 , mr2 , *2 and m2 4 .

For calculating the optimal polarization in the ptevious

examples it is noticed that, as expected, the cross-

polarization (XPOL) nulls are antipodal on the Poincae

sphere and they bisect the angles between the co-polarization

(COPOL) nulls. Also, it should be noted that [M] and [Mm]

have only seven independent elements as shown in the

calculations for the monostatic relative phase case us shown

in Section 3.6.1.

More studies ara needed for analyzing the same shapes of

targets and others, and also for sea clutter with and without

target to see the effect of changing the frequency or aspect

angle on the COPOL and V201L null locations and how they axe

moving on the Poincare sphere. For the mere reason to keep

thiu report of still modest size, aspects of target optimal

polarization characteristics will be treated in detail in d

forthcoming report.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

We have thoroughly reviewed the literature on the basic

theory of polarization utilization in radar target

allocation, detection, imaging and identification. Based on

this study, we decided to develop the theories and computer

assisted numerical algorithm. , step by step, rechecking

every alternate representation found in the literature and

thus correcting several misrepresented formulations. We will

retain this approach r!.z ,:emu mr studies and produce four

major interim reprts annually.

5.1. Proiress Reported in this Report(Januaxry 13, 1981:)

We rederived the basic formulations of polarization

representation for the radar case. 1e established the

relationship between the 2xZ radar sc•ittaring matrix[S], the

4x4 Stokes reflection matrix[M], and the 4•4 modified

Mueller matrix[Mm], and vice versa for both the monostatiu

and the bistatic cases. We derived the assorciated

expreG8o1s for calculating the CO-POLARIZATION (COPOL) as

well a•s (.OSS-POLARIZATION (XPOL) nulls and their

prasentaticos on the Poincare sphere. Inversely, given the

radius pinspan( (S]) of the Poincare sphere and the

coordinates of either both COPOL nulls, or, of one COPOL and

one XPOL null, we derived the exprissions for the element3

of (S], (M] andlor (Mm] re-expressed as functions of p and

the coordinates of the two respectively given nulls.

- l- • ' • l • i • '''' ' I !
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We have developed computer program algorithms for

calculating these scattering m&tric, the associated

optimal polarizations '.•or the monostatic and bistatic cases

for a variety oi perfectly conducting target shapes. We have

initiated close collaboration with swveral research

laboratories in possession of excellent measurement

facilities for obtaining reliable monostatic as well as

bistatic scattering data, and some of the data made

available have been used to calculate the respective optimal

polarizations.

We have e"tended the mono-chromatic theory of the optimal

polarization concept to the quasi-coherent and pan-chromatic

cases, and we are completing a study on a novel vector

scattering approach of extracting the useful target signal

from clutter perturbed data which will be presented in

detail in one of the forthcoming reports.

5.2 Conclusions

Tan analyzing the model data used for verification of t:he

optimal polarization concept, it becomes very evideat that

we require to measure in the monostatic case the relatLve

phases and magnitudes of the elements of the scattarinjk

matrix [S] to describe the complete electromagnetic

properties of a target uniquely. For example (see Section

4.2), if the relative phase between the two co-polarized

components, S• and SB, is not known, we find that for

grossly different shapes the magnitudes c~a be identical

2- .
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resulting in ambiguity of identification (Section u 4.2,

examples 1, 2 and 5). Thus, the relative phases existing

betweon all elements of the scattsring matrix [S],, need

tc be measured for proper unique presentation of the target

polarization :harar.teristics which is being cleazly verified

by the examples presomted in Section 4.2.

We also note that the inverse process of calculating the

ele s of IS], [M]and/orm]t fom th6 aoordisas of the

respective optimal polarization nulls, provides deep inside

into target characteristic properties and we should have a

powerful tool for introducing the concept of target

polaiZ&tio. 3ynUthGSis. In target polaxixation synthesis,

we would wish to design the shape and properties of a target

such that it produces a given set of optimal polarization
pairs.

5.3 Recommendations

Based upon the results of our model verification studios,

we con=clude that it is meritorious to further advance the

optimal polarization concept first introduced by Professor

Edwaxd H. Kemnaugh, subsequentl• extended by Dr. J. Huynen,

and to utilize its great potential in radar target imaging

and identification.

We also recommend that in microwave remote sensing using

both passive (radiometry) and active (SAR, SLAR,

SCA2TTOMETRY) methods, measurements of the complete

monostatic., relative phase scattering matrix(S] are made,
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i.e. both fmplituds. and * ,1,ative 2hes of all four

(throt) elements need to be executed to obtain unique

information on the scatt•ring properties of remotely seaod

ta•g•ts. The associated questions of applic••le measureoent

tenIhiquea will be troated in ot forthcoming ziport in great

drstail.

TIM
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Av~pedix (A)

Proof of Eaa.(3-8)

From Eqs.(3.3) and (3.7), we have

h X1 axS~ a a tu -sino coax

hj eY sin# coa* j5 n

Then, we can write h, and hy as:

and
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From (A-2) and (A-3):
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Also, from (A-2) and (A-3)
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Therefore, 2R*(h h m ua a coa6 n a~sizn20cosaZ (A-5)
7 27z

also,
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There fore, -2Iu(h h 2 A a Sind a asinz- (A-6)1x 17

From (A-6) we can write
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Also tr'=m (A-2) and (A-3), we can write
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In summary, from Eqs. (A-4), CA-7) and CA-9) we cA. rewrite them

again:

a 2 2+& 1

2&ya

2axty
cou• •6 (A*-1Q)

aixa .ya,

whic. are Eq.(3-8).

U.,.
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Ap~pendix (B)

Stokes Parameters

From Eq. (3-9), the Stokes parameter3 are defined by

1h1 Ih~I I'

£2Ze~~, U (B-1)

S32 2XRE(hxhy } a

From Eqs.(,k-4), (A-5), (A-6) and (A-8) in Appendix (A), we can

rewrite the Stokes paraMeters £n tekrMs Of (A a $A 65 )

or (40TO "s following

I h ~ hy Ix

U h11' - IhP 12 aa . a~ I alcos2uco*20

xY

S2 Ze~lxh } 2&%&aQaha walaoZTsil B2

From (B-2), we can write

91182293 (1 +U + V

a "(coZt'2c(OS22"+cos2tsin22+st)v

90 4~ (B- 3)

A14
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Av~endix CC)

Regrosentation of any yclarization vector on Poincare's Sphere:

Given

where h11  h aro a general complex nmbers, and h1x 7

and h are the unit vectors in u and y directions,

rupect•ively. If we introduce the auxiliary couplex

paramoeur using h and h7 components of (C-1) then

11 - ,, - (c-.
hx+jh 7  l+JP

where

P i---- polarization ratio (C-3
hX

But we have from Sq.(3-3):

ax 4 ja XJ, hy W aye~ a(j-

where s a A ,)a, are real numbers.

Then.

P =J-.= .. (6.-,ax) = ._ja (C-3hx a. az

whoere a 5 a x (C-4

Substitute (C-5) into (C-2), then

-jP 1- (am 7 a x , ),,

I+Jr +~ 71÷ C/a X)a ej
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1+j (a.7/a)(cos5+Jsin6)

Therefore

(l+(a7/ax)sinfi] -j (.sy/a)coas

U (a/ +j(ayj%) cs 6(C-7)

Introduc~e the real numbers Xzand Y such that

x 1+(&,ia1)sin6

x 2 a -(aY/a 1)siud (C-8)

y Y/ Ca x)Cosa

Then:

xl -j y

U. ((2-9)

From (C-9)

K 2+Yx (1+(a / a 1 )s5u6"+{(a 4/ a x)COSU

1-2(ay/a )ain64+(a 7/aa

Therefor*

J1u1-1 (1+2(&,/a x)sinfi+(a /a)2)-{1.Z(&y/a )sjnd+(ayj/a)2

Iui 2+j (1Za/~±4(~ah. 2a /)Sind+(& 7/a )2

x x YA
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It 4(ay/a )Sina

] a

So2 a sizY~g

a as2sz2 =a 2&ac

M &13 a anz sn 26y~S3Y

From qs(C-10) andedi (C1) hrfr

Ju 2 -

- aO coa2s(*i2ZT 3i2na os
K' '+
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~~ * ~ - Jul 2 -1 C-4

Ilul 2+1

From Eq. (C-9), we have

x1-jy x -JY X2-jY

x 2+Jy x 2 JY x 2-Jy

(XIx 2-y2) -Jy(x 1+X 2)

x 2+y1

Iu) -YCX1+X 2)

tan(phaze(u)} ) (C-15%

Substitute from (C-8) into (C-15)

-(ay/ X) Cos 6

tan(phas 0(u)1

a

Y/x

a CO9

Y/ y Iiz-aY/ax2Cs1-2ayaI I.5
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But from Ecq.(C-11), we have

S2 2a xay Cos5 acos2rsia2

-1 ax 1.& 7

, tan.(2) (C-17)

From Equ.(C-16) and (C-17), therefore

tan(20) a -tan(phase(u)} or 20 -phase(u)

If we let 0' = 20, then

Im(u)

- 20 = -sxctan(-- ) = -phase(u) (C-18)
Re(U)

In summar7

If we have a polarization vector

A-A
ahzhx+hyh n a

we can represent this vector on the Poincare sphere using the

conventional spherical coordinate system (r,8,0') as follows

If u a ((l-JP)/(l+JP)) where P is the polarization ratio

defined by: .hY/hX M (a/a)e 8ja. a a ay-X

therefore

r l a- + I

l ul "-1
tu *-Z ar2' arccos( I(- 9

Im(u)

0 " 20 -phase(u) -arc:an( -}
Re Cu)
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Aypend~ix D

Proof of (I) DetC(S'(A'.B')]J Det([S(A,B)I) invariant

(II) Spa{([S' (A' )B')Il Span([(SA,B)]J u invariaint

we have from (3.50)

Csetp l[S .isp2S' +p(S +S )] D-1)

sf~l~l *1p [-i SAA+pSBB+S BA-OPSAB)(D3

iCtp* S'AIA( *2S+S'3  (D-4)'

B dBl AA BBP (SAB+SBA)l

*~w of (I* e~S('B)) e SAB nain

+('p 2'SMD+ASA(S'BB4S'B'A)(pp '

$4. SAP SBB+ASIpp SB,'EpS~ig P SBBSB,- AI

(1+AAPp (p as A +33  Ba 3A B4 PP (SAB SBA3

*pp ZS S Bi+p"p* SBA S B3p Ip ZS sAB SB*pp SBA}
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- 1+pp (S - SSB(1+p~p +2pp )+SABs ACZpp*l-pp*)

+SABS AL(-p 4pp 2a~pp +p )+S BA sMC(p +pp +p pp

L ~+SABs Cp P4*P*4pP ~P)+S3AS3(-FP ,p+P-p+PP*)}

m (1+pp) 2 (SAAS BB(1+pp*)3-SABSBAC1+pp*)}

a (SAAS BB-S ABS BA)

=det([S(AB)]I)

Therefore, det((S'CA',Bt )]) det((S(A,B)]} a invariant(I

Proof of 11 Span(rS(A'.B')1) =Syan{fS(A.B)11 = invariant

Fri'm the definition

S'AItAS'AI SAt'IAB B'A E&IBA B#B'B#B (D-:

Use Eqs.(D-1) to (D-4) and their conjugates into Eq.CD-5),

therefore

Span{(S'(A',B')]) ((SM~SBpS+B)(& ZS (S +s

ItA

+(-pS+i'Sp(+SABp ,)](-PSAA +pSBB pS+SAB )}pp SB p )

-( *~S (l.+ppB Or J(SBB+SZAIPB A * +S B +pp(A +11 )(Ipp

+i SB *& (*+Ipz*2~p*]+ 1BA SBA&*(pp *+p p *2+1.4pp*

AB B A
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hSAS B*[P* p+P P*2p* 2 ]+.SBB S BA P'P2+.P'p*2.p*

+s SAA Ap+p2F p..p pp]+ sBBsB(p~p -P pp
+, * 

** *' 
+ *-~

+S A B3* Pp p '-P -p *'P ]+SABsB * fp*2 p*2 * P*j

+S js 33 ~*~* s *p*2+*2+S* * P* *

BB~p2-2-pl~2]-pp BApp I

= (1+pp*)3(IsMIZ+IsBB 2+Is BI+ISB 12)

= (l+pp *)span(CS(A,B)])

Theref ore

Spau([S'(A',B')]} s pan(C(SA.B)I} in~variant (II)
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4_•.ndiz S

Derivation of the Mueller Matrix[M1 from the Scatterinz Matrix [S]

Given
h. hAhA+h.hB CE-i)j

and Ar (1wt Ss 2 ,s.3) so that

so lIhAI+ + IhB1

9 -1 h - 1k.3 l

S2 U3 - e(h AhbB* (E-2)

S3 V - -2I(AhBh3

satisfying

so a~ ,, SL 2+;922z+832 - z ,,Q z~ +V (E-3)

the scattered and the incident Stokes vectors Z and S are

re.lated to each other by the Mueller Matrix [M]

g(A,B) [M(Ii (A,B) (E-4)

We -have also

h or

57, S '

- BA : [B fl CE-5)

Therefore

h SA~hA + SAB"Bi

SSB~hA + SBbý (E-6)
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I hA5 I hAshA 3

*ChA±~+SA13hBi)C(SAAhA~+~

hB A * bAi*

A ISAI'hAi"+SASIUhBI+S ALhAB *hASA-

IhA~ ~Is ISllhA iI+SI I +ReS ShAhi(E7

Therefore,(~~h~**

But. we have

5 ~3 h,&h 3  s - ,(Re{ SS" } IIm( SASAB If Re hA~hB*~)+j Im( h&ihB' 1 ]

a j(ReS S * }Im(h. b.. }+R (hAh..1 1ImSS

J[aSA.A SAB * ADh A )R~A, )MSAA AB

Therefore,

2Re(S AASAB hANibIa ZRa(SASA.B*}Re(hAi}.B')ZIm(SAASAB}lIm~h~ih'*}

(E -8)

Substitute from (E-8) into (E-7), therefore

ih As SAA121 hA 1I+ISABI 1 213b ',+ZRe(SAAS AB )Re(hA'h.' I

-21m{S SAB) m~hA~. ~ (E-9)

5BA A SBBb.B )(BA hAi*4BB hB I
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-'BA2'2 hAt l+j SBB31 h 2j I +SBASBB hAiYB +CSEASB3 A~Ei* *

ISEBAL hAI1+ISEBBI hE 11+2.Re(SBA SBB hAihui*) (E-10)

Siailia~r to Equation (E-8), we can write

2Re,(SBAS BB hAihB1 ZRO(SBASBB* )R~~~3* '

Substitute from CE-li) into (E-10), then

h'BhI S SBA Ia Ih A lz~sBBIzh Ihl+ZR&(S BA SBB )Re~hLh. *)~

-ZIM(S BA SBB Im( (h1%hj'b(E-l2

From Eqs. CE-2), (E-9) and (E-lZ), we can write gSO 3 n

as follows

( Is. 2+1 II l

AA CI~1 BA:)IhA±i z+(SIsI2+ISBB2)lhB~

+ZRs(S SA +8 S )Re b &A f BA +S
AA&B BA BB ''4' aB -~(A B BAB I~~

(E-13)

use the identity

ax+by m 1(a+b)(x+y) + +(a-b)(x-y) (E-14)

Therefore.

gOs 3 +{ISAAI+ISBAI4s2 + I B1+S BBIIC('hA ii2+Ih3 1I

4K{ISA~I 4ISBAI -fSAB 2 -ISBBj2)( hAt 1]i-M1 2)

+ZesAA SAB +B A SBBI Re{ hA

-ZIM(S S~ +SBASE IIm( hAh}(-S
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UsinU- the defti2tion (E-2) inato (E-15) :Therefore,

where.

a{IS 11 A4 + S3 A14.I1SAB 12+1 s BBIZ

*a R*IS 1+S I.s IIS~j} (E 1t7)

13 U eSSAYJ BAB

la- tm S ~S 3 +S ~s 3

Using~ the idsutity (E-14) orith. (E-1.8), that

gS a*'(IsJAi2-'s'A'+LS ilx-I .BB3s (Ihk 1 + 1Ib~ls )

44 {ISAAI!SAI*iSAB j1 .jSBB3 jZ(Ih±I12..h 12~~)

+ZRe{S s s ~SAB*}R"'( hA*hB

.2Ia(S s~i s s }Im(bA'h~

ZIS "'.ZS +2342 +2Z4g3

where

1 n R.I 1 BA'.'s 11-js

2 A BA AB3 BB
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24 10IMsAAS3AB} a B'S 3b ) aA

2.caloulaion of &I and

1*bj" (SIC8 , +0 Uhi ±AhA*'B

8 A (ti I A A BB3) IAA aB~,,.+uB%,N

h s ¶~)+jIm(S3 }] fWehA*j(~ 3 ±

A S Rme($AAB~IA}+mA BaA A* ~~±}.~mh*} ~z

Frosu~ CEsZ and(EZO

h+±Reyss )+I M($ s+o~ )I[eh3  20

+Re~AS B±*R{A ASB + 3BA Cim t*}Im{SA~B*w8A)' IE

* * 2

2* e as(S ASIA * 1hA iU )1R(IhA3sD I4 Ih ill

+ZR(S3)*+S S*)+8h . ±*Im sS* 3S )IsA~

*R{SBA aS BB A*}l

j*4
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aS32  R*(S S BsA S 5Asa3~ 3BZ

at33 *e AS5 + BSU

Also fr= (?,-2) end (~B-20):

-1(I14(9AASI.&*} I'hAL1 24m(8AB533*)ISh5

+Re~ A h, ,)x (S " S B +5ABi

+ S S 2+ NS 2

24 }XM( AA BA+6 B

344 URe($ AA 3 BB S S BA

IA SUinary, then the eleMents of the Miueller matrix m ca=

be written ±n terms of the elements of the scattering matrix as

follows

(a) Bistatic case

m ~11 W {SAA 12+1 SEAl 4.j AB12+1 SBB3III
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12 W{SAA1+ISBA 1IS ABI IS BB 12

* Re{S S+S .S,.13 MAEA BlABB

*-IM(S S +S S
14 MAAA BA BB1

m WS{b 12-IS 12+1S1
22 BM A AB BBs3I

22 +(s(MSI"' 'SBAI .S B123IBZ

23 A t(SAB B3A5 BB~

m31 a M(SAA A 5ABSB

m3Z a ReS AAMSBA*-S ABS BB}

m 33 a Re{S AS BB+S ABS BA )

3 34 a I5(S AS BB S ABSBA )

m41 -2I£{ASMSBA+S AB SBB}

*2 --Ii(S A S BA S BSB

M43 -l(AAISBB+ AB SBA

44 Ro(S AS BB ~SAB SBA) (E-23)

b) Mon~static case (S ABUSBA)

m i{ Is 1+21SABI 1 +1 S 12I

M12 WS- :YSM~S BB 12

m R&(S SA * +S SB

14 AA t SAB ~A.B BB

LI



a f(IS I.Iis 2 - 12)

22 SAAIZ S3BI'2ISABI)

m23 a Re(S SASAB -SA.B'aB

24 AA AB Ar.BB

3a a RO(S S +4SsE* S

31 AILAB ABBB' 13

m 3 R*(SMSIB}AB s &B f BB M2

* uIM(S S34U

m 41 - Im(S AAS .+S AB SBB W 14

m43 - Im(S AASE S BB m 34

m *SA B)I . 1(Z-24)I
we also do notice that

344 33 V 11
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Derivation of the Modified Mueller Matrix [Mml from the

Scatterins MatrixfSl

Define tho modi4fied Stokes parameters for the polarization vector

=2 ZR*(bh) h U (F-2)

SI 3 3  ~ZIin(hh} V

and

We have:

* hB' r BB h S4 ( h4)

:IE ait' L 3~ SUbB I]i

-(S Ahk +S4 3 hB±B)(SAA~h A i+S4 3&hBbI i*)

IS Ak~hizIA''BI+ BSA A B+A B1 -Bi

7I
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= SAAIIIl sM Ih i A2 1s 2 1 bLB 1+(S AAS. h~a. )+(SAASULihBh)*

But: we have

S S * 3 -hB (R*SAA,* IjIm(SS *)I (Ra(hA:Ll1B i*) lbL

[R*(RS S IRe~hAih.i* ImT(S S*II (1i *

+j (tm( S~S * R~ +eSS*)Mh

Therefore,

ZRa(S AAS ABh Alh} ZRa(S "S ABRa(hila *) -21m(SASA* I lM(hjb1 I'*

2lm(S AAS ABhAk 1B 21Zm(SAASa*}Rs(hiAhB*}+ZRe{SAASAB,* Imi(tLhB'h

Substitute from (7-7) into (F-6), therefore

2 Ih12

=IS AlaI IhA fI+(AIS 21 'I hI+naR(SASAB*)Ra(hAh.B'*}

-21m(SA SMSAB I I~{hAih

Therefora,

1 IS 1I 'A+is 121 1+R*(S' SA lIU W I{S S)v (1)

also we have

=(SB hA+S ~E)(5 * +*
BA A B"B B A4SBB hE*)
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a IS B 12 IhAl Zi 1+S BIZ 2 ib1 I+S BA SBB *hA'i.b~+(SBASBB*AhA~Bi)*

=ISB I'I h A i 1+1S3 BB12 IL ij I+ZRGe{ BA S BB*)e hA hB}

-2IuS SBA SBBE 'IM~hAibB 1

1 I:SA '+Is S33 2i+R.s*}SS ui+Im~s s*})Vi

h 3bASb)='(A hA +S LhS

= S "S BA*1"AlhI+BS, S B BIh3 2+S AAS3BB h Aihi* SA.BSBA*(hAibB±*

AA{S BA A 1~I2+R.(SS*}BB Bi2

+jIw(S AS BA *})h b1 2+jIM(SABS} BB hij

+(RG(S AAS BB +j Im(s AS BB I] fRO(h A~h~i*}+iIM(h~h~i*}

[RO{S ABS BA }+JIM(S BS BA*} [Rk(hLA~hBi±*} j hA, hB±*}

Then

2R( A b B'} ZRe{S AA SBA} *Ih Al2+Z~efSs AS. j 2B*)h'

+ZRS(h A B* Ra( A S SBB +SABS BA*

L2m~AihB.E*) M*SiAS BSA.BSBA}

Theraform,

U' ZRSA.A SBA )I A '+2Re{S ABS B *I

+Re{S AA SBB +S LBS A )U i+IM( & S SBB S AB SBA )Vi II
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also,

*Zm'A5-I~ l 4121( * £1B

23eS(S U% SABShJEA Iin(hAh 3

Therefore*

-'(A~B*+ASZ Ui+* SAA SBB *-S AS sBA *l (IV)

In swmmaay, froul (I) to (IV), we can write IMM] as

Isin All'A Re($ " S AB IMfS AAs k3

FBAiBBRa(SBAs 1 B* Iu(S SBA s BB A*

L ~~ZXU{S bAA ) 22is(AB SBD} Ra( AMbBB 4 S&3AB s B S(SAASB*SA~BS3~l}

(V) -
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Appvendix G

Derivation of the Scatterinx Matrix [SI from the Mueller
Matrix[MI

It is required to calculate the scatte:ring matrix [S] from the

Mueller matrix([] in the general bistatic and moonostatic cases.

The scattering matrix [5] relates the scattering and the

incident polarization vectors by the equation

h (A,B) - [S( tiCA,) (G-1)

where

s sSIeS IeJOAA ISsIea AB (G-2)

Also the Mueller matrix relates the scattered and the incident

.St'jk" vectors by

(AB [MIS (A,B) (G-3)

whs:e:

so 'hAl*Ih•AIh

" IhxAllb-BI2 (G-4)

93  A
L J 4

1. Calculation of the magnitudes ISIAAISABISBAI and IS.I•B

From Appendix (E), we have

=•z'••I s~l=1s I Is ÷11 sa1l +1 Ssl= (G-5)
11 A A A B2
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"12 = sIAI+B1 S ABIIS BB CG-6)

n21 " *(ISAAI 'ISSAIa+ISABI I ISsB I)1 (G-7)

Za W *(IS I-IsBAI3-Isa 1+1S3sl1 (G-1)

we have

a'11 + 2 " IS"'a + 'SBA' CG-9)

"ah .+ m a IS•Al - iss. 3  CGIo)

then

"11 + a12 + " 2 + m22 = IS IsA

and

a 11 +a212 -a2  -a2 2 = 21SBAI a thereforej
Is I I + M+
"AA 11 ÷ a1 1 2 =21 m 2,
Is sAI a R(.ll +M1 -.21-m 21"(G-1)

Similiary :

"* " . a IsI1l + Is 1I2
11 12 AB B

a -a - IIts I-S
21i 22 M SABI BB3

Therefore,

ISA ( -- (G-13)

is3I 3 - -(M1 1 12- 21 +M2 2 ) (G-14)

2. Calculations of thQ pha"" OAAS on, 5OA' *BB:

Also, we hav, from Appandix (E)

•v( S + 8BS] }
13 R A{ A BABSB

M* ,. * S.+,14 A AB BA, BB} .

* -

S......... . , .. " " • ~ ~ ~ ~ ~ ' ' 1•• ... • "i '-• • •--.•
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-z 5 AbmA Iksil

(G4%3 (Q-6)

CKU7346= 4- C-24*u)

Cguem~, iCw 7 1v4 ) 'A'
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* *

m41 = -Im{SAASBA +SAB S BB

* *

m 3 2 = Re(SAASBA "SABSBB
* w

42 AIA{SMSBA ABSBB

"The-refore,

m3 1 -jm41 = SAASBA* +S ABS BB (G-19)

and

m 3 2 -jm4 2 = SAASBA -S ABS BB then (G-20)

(m3 1 -J 4 1 )-(m 3 2 -j 4 2) = 2SABSBB

(m3 1 -.m3 2 )+j(m4i2 iM4 1) = 21SABIISBBIeJ(ABBB) , therefore

n4 2 " 4 1

OAB-OBB = arctan ( . ) , or

m 3 1 "M 3 2

M41"m42

OBB = OAB+arctan( ) (G-21)

M31i 32

From (G-18), (G-21), therefore

m14" 24

OBA = OBB+arctan( )

i 13 -m 2 3

t'
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m 1 4 " i 2 4  m 4 1 in 4 2

*BA = OAB+arctan( )+arctan( (G-22)

m 1 3 "23 m31 32

In the monostatic case :

From Appendix (E), we have

m 2 1 = 12

m31 M 13

m 3 2 = 2 3

m 4 1 =m 1 4

m 4 2 = -24

m43 -m34

m44 nm33+m2- m
22-11

Therefore,

IsAAI = ½(mi 1 +2m Z+M22)

ISABI = Emil'- m2 2 ) = ISBAI

ISBBI = Eml 2m12+M22)

A= •+arctan( )

m13+M23

OAB is arb.

mi1 4 " 24 "m14 +m24

OBA = OAB+arctan( )+arctan(

m13" 2 3  m13" 23

= AB



PAGE 154

in14- 24

OBB AB *~arctan( - )
m 1 3 - i 2 3

In suxdinary:

1. Bistatic case

is A~ =Vi(in 1 1 +in 2 +in 2 1 + 2 2 )

Is BBI V= (ul"2"1m2

m 14 + 24

*AA= A+arctan( - )
m 13 +M23

OAB is arbitrary (may be = 0)

i 1 4 i 2 4  i 4 1 i 4 2

B= A+arctaI1( - )-4arctan( )

m 4 1 " 42

OBB = AB +arctan()
in3 1 - i 3 2

2. Monostatic case

Is AAI =, j*Pinl+2in 1 2 -"' 2 2 )

Is ABI = *(in1 1 ý 2 2 ) = ISBAI
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m 14+m 24

A.A =•AB+arctaz(. .)

13 23
OAB is arb.

OBA = AB

m14"24

¢BB = AB arctan ( '"

m 1 3 -m2 3
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Appendix H

Derivation of the Scattering Matrix[S] from the Modified Mueller
Matrix[Mml :

From Appendix F, Eq. (V), we haveM 11 = IS AAi'

M12 = ISABI 2

K13 = Re{SAASAB*}

14 Im(SAASAB*}

1S~2M 21 =IS BAI2

F2 2 = ISBBII

K23  BRe(SASBB }

M*
H24  IM(SBASBB }

M 2Re(St•SBA)}31AAB

M 2Re(S S
32 ABSBB

M33 =Re(SAASBB +S ABSBAI

* *

M34 Im(SAASBB SAB SBA

M 41 - 2 Im(SAASBA 

{

42 2 Im(SABSBB }

M 4 3  ImSAASBB +SAB3BA}

:J* *

M4 4  Re(SS BB "SABSBA }

Calculation of the amplititudes
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ISABI = M1

ISBAI =f;

Is BBI1 TMZ2
Calculation of the phases

M13 +JM14 = Re(SAASAB }+AIm(SASAB*}

= S SAB

= ISAAISA I3 •,Ie AA-OAB)

Therefore,

H14

tau(1 A-OB) -

M13

Then,

M 14

*AA 0AB+arctan(--)

H13

also,

M34 +M4 3 = Ir(SAAS BB "SABSBA )-Im(SAASBB +S ABS BA

S*WIm(S AA SBB }'Im(S ABSBA }'Im'S AA SBB }'Im(S AB SBA}

= -21m{SABSBA }

and

M33-M4 4  Re(SAAS BB +SABSBA }-Re(SAASB3 S ABSSA }

2Re(SSABSBA}
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then

(M 33 -M 44)-j(M 34 +M 4 3) 2[ eSA A )+ i BSB

2S AB SBA

21SI ABISBA I e ABOBA)

m +M
34 43 >

ta(AB-OBA) -

K33 - 44

Therefore,

OABOBA = arctan(--)

M33 - 44

or

K34+M43

OBA = AB +arcta1 -

m33- 44

also we have

M32-j 42  ABB BB

= 2S SAB BB

= 21S ABII ~BB je(ABOB

then

K42

tan(O AB-OBB)

K 32

or

K 42

OBB =OAB +arctan( -)

K32
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In summary for the bistatic case

AA' VfI4, AB "12 SBA "2 1  BB N2 2

and

M 14

A= CA+arctan(- )
! ~MI

H13

OAB is arbitrary (may be=O)

I, M3 4+M4 3

OBA 0 AB+arctan( )

M3 3 -M4 4

M4 2

OBB = AB+arctan(- )

M3 2

simplify in the monostatic case so that sABI'ISBA( and

AB =BA '
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APPENDIX (I)

COMPUTER PROGRAMS

This Appendix includes three computer programs. The first one

calculates the Mueller matrices [M] and [Mm] from the Scattering

matrix [S]. Also, it calculates the COPOL and XPOL nulls and

their representation on the Poincare Sphere.

The second program reconstructs [S] with relative phase from

I [M] or ['m].

A

The third one reconstructs also [S] from the knowledge of the

spherical coordinates on the Poincare Sphere of either two COPOL

nulls or one COPOL and one XPOL null

ii

I
I

I,
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1-i FIRST COMPUTER PROGRAM

This program calculates the Mueller matrices [M] and (Mm]i f 'in the scattering

matrix [S] in the bistatic and inonostatic cases using the Equations of

Section 31.6.1. Also, it calculates the COPOL and X.POL nulls and their representation

on the Poincare sphere using the equations of Section 3.5.

//BAKRY JOB

// EXEC WATFIV
//SYSIN DD
$JOB NOEXT

C THIS PROGRAM CALCULATES THE MUELLER AND THE MODIFIED MUELLER
C MATRICES FROM '-HE SCATTERING MATRIX IN BISTATIC AND MONOSTATIC
C CASES.
C ALSO, IT CALCULATES THE COPOL AND XPOL NULLS FOR S AND R1EPRESENT
C THEM ON POINCARE' SPHERE
C PUT LANE=O IF SIGMA'S AND PHI'S ARE KNOWN
C PUT LANE.NE.0 IF S(IJ) IS KNOWN

COMPLEX S(2,2),RHO(2),CI
DIMENSION AM(4,4),AM'M(4,4),THETA(2),PHI(2)
COMMON CI,PI,PI1,PI180
CI=(O.O,l.O)
PI-=4.0*ATAN(l.0)
PI1=l8O .0/Fl
PI180=PI/180

C
C DATA
C

NDATA=9
LANE=O
DO 999 II=l,NDATA
IF(LANE.EQ.0) GO TO 160
READ 55,((S(I,J),J=1,2),I=l,2)

55 FORMAT(4E10.3)
GO TO 161

160 CONTINUE
C SIGHHl,SIGHV,SIGVV IN DECIBELS
C PHIHH,PHIVV IN DEGREES

READ(5, 155)ASPECT,SIGHH,SIGHV,SIGVV,PHIHH,PIIIVV
155 FORMAT(6F10.2)

W'RITE(6,156)ASPECT,SIG}EH,SIGI{V,SIGVV,PHIHH,PHIVV
156 FORMAT('1','ASPECT ANGLE = ',FlO.2,2X,'DEGREES'//'O',t SIGIH H

1,FlO.2,2X,'DECIBELS'/'O','SIGH~V = ',F1O.2,2X,'DECIBELS'/'O',
2'SIGVV = ',F1O.2,2X,'DECIBELS'/'O','PHIHH= ',F1O.2,2X,'Dk9GREES'
3/'O','PHIVV = ",FlO.2,2X,*DEGREES'//)
CALL SCAT(SIGiU,SIGHV,SIGVV,PHIHI{,PI{IVV,S)

161 CONTINUE
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C S (2,l)-S (1, 2)
C
C PWR-NORIIALIZED FACTOR
C

PWR=-CABS(S(1, 1))**2-CABS-(-(2,2))**2+CABS(S(l,2))**2+CABS(S(2,1)),k
12
F ,'.2-SQRT (PWR)
WRITE(6 ,5O)

50 FOllAT('1'.'TI{E SCATTERING MATRIX is 0i
DO 1 1=1,2
WRITE(6,60OAS(I,J),J=1,2)

I CONTINUE

60 FORMATi('O',2X,2(2E.1O.3,5K(Y)
C. i
CC WRITE NORMALIZED SCArr'~ j~ A ATRIX

WPITE(6,51)
51, FORMAT('0','THiE NORMALI'Z SC~R TNGMTI s:/

DO 11 I=1,~2
'I WRI-A,6,6O)(S(I,J)/PIWR2,J=1,2ý

CALL STOM(S,LM)
WRITE(6,70)

1)0 2 1=1,4
WRITE(6,80)(AMl(I,J) ,J=1,4)

80 FORIIAT('02,%X,4(El0.3,5,X))

WRITt(6 ,*)xX,PVR,PWR2

C

WRITE(6,71)

7,. FORMATC tO t,'TIM N~ORMALIZED MUELLER MATRIX IS :/
DO '12 I=1,4I

12 WRlTE(6,80)(AM(7,J)/PWR)J=1,4)
CALL STOMt1(SAI'4A)
'WRITE ('¾90)

90 F0RMAT('1,'THE MCT.FIED MUELLER MATRIX IS://f

WRITE (6 ,80) (AIMM(T, T),J=1, 4)
3 CONTINUE

C
U WRITE IN0I.MAL.EZED MODIV1IED MUELLER MATRIX

C RT,(,1

91 FOFJIATQ'O','THE NORMALIZED MODIFIED MUELLER MATRIX IS 7/
DO 13 1-1,4

13 WR±Ii;(6,,,)(AIIM(I,J)/PWR,J=1,4)

ISW=O
CAIl. COPQL(S,RHO,THBTA,PI{I,ISW)
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IF(ISW.EQ.1) GO TO 120
WRILTE(6, 100)

100 FORMAT('1',t THE COPOL NULLS ARE:/)
DO 4 I=1,2

4 CONTINUE
101 OR-"O '2

1 R1O =',2GI4.7//'0','THETA =',F8.3,2X,'DEGREE.S'//I
1'ol ,~PHI = ',F8.3,2X,'DEGREES'//)

120 CONTINUE
CALL XPOL(S,RI{O,THETA,PHI,ISW)
I"(ISW.EQ.2) GO TO 999

110 FOR!.IAT('0','THE XPOL NULLS ARE:/)
DO 5 1=1,2
WRITE(6, 101)RHO(I) ,THETA(I) ,PHI(I)

99COMPLNEXS22COJS1S

DIENSD NA'144

SUACBRUIES(S(1, 1))**

SACAMPEXS ((,2) )**2,SS

SBA=CABS(S(2,1))**2
SBB=CABS (S(2 ,2) )**2
AM(1 ,1)=(SAA+SAB+SBA+SBB)/2.0
AM(1.,2)=(SAA-SAB4-SBA-SBB)/2.0
AM(2,1)=(SAA+SAB-SBA-SBB)/?..0
AM(2,2)=(SAA-SAB-SBA+SBB)/2 .0
S1=S(1,1)*CONJG(S(1,2))
S2.=S(2, 1)*CONJG(S(2,2))
AMO. ,3)=REAL(Sl+52)
AM(1 ,4)=AIMAG(S1+S2)
AM(2 , 3)='&ýAL (S 1-S2)

AM(2 ,4)=AIMAG(S1-52)
Sl1S(1, 1)*CONJG(S(2, 1))
S2=S(1,2)*CONJG(S (2,2))
AM(3,1)=REAL(Sl+S2)
AM(3 ,2)=REAL(Sl-S2)
AM(4, 1)=-AIMAG(S1+52)
AM(4 ,2)=-AIMAG(S1-S2)
S1=S(1, 1)*CONJG(S(2,2))
S2-5(1,2)*CONJG(S(2, 1))
AM(3 ,3)=REAL(S1+S2)
AM(3,4)=AIMAG(81-S2)
AM(4,3)=-AIMAG(Sl+S2)
AM(4,4)=REAL(Sl-S2)
RETURN
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END

SUBROUTINE STOMM(S ,AMM)
C, THIS ROUTINE CALCULATES THE MODIFIED MUELLER MATRIX AI4 FROM THE
C. SCATTERING MATRIX S IN BISTATIC AND MONOSTATIC CASES.
C, GM=(IA,IB,U,V)
C

COMPLEX S(2,2),CGNJG,S1,S2
DIMENSION AMiM(4,4)

S1=S(1, 1)*CONJG(S(1,2))
AIMM(1,3) REAL (SI)
AMI4(1,4)=AIMAG(Sl) *
AIIM(2, 2)=CABS (5(2,2) )'ý2ý
Sl1S(2, 1)*CONJG(S(2,2))
AMM(2,3)=REAL(S1)
AtIM(2,4)=AIMAG(Sl)
SI=S(1, 1)*CONJG(S(2, 1))
AhM(3,l)=2.0*REAL(S1)
AMM(4, 1)=-2.0*AIMAG (Si)
S15S(1 ,2)*CONJG(S(2,2))
AIIM(3 ,2)=2.0*REAL(Sl)
AMM(4,2)=-2.0*AIMAG(Sl)
S1=S(1, 1)*CONJG(S(2,2))
S2=S(i,2)*CONJG(S(2, 1))
AMM(3 ,3)=REAL(S1+S2)
AMM(4 ,3)=-AIMAG(S1+S2)
AMM(3 ,4)=AIMAG(Sl-52)
AMM(4,4)=REAL(S1-S2)
RETURN
END

SUBROUTINE COPOL(S ,R.HO,Th-ETA,PHI ,ISW)
C THIS ROUTINE CALCULATES THE CUPOL NULLS AND REPRESENT THEM ON THE
C POINCAR.E' SPHERE
C

COMPLEX S(2,2),R1HO(2),A,B,C,D,CSQRT
DIMENSION THETA(2) 1PHI (2)
A=S(2,2)
B=S (1, 2)+S (2 ,1)
C=S(1, 1)
D=CSQRT(B*B-4. 0*A*C)
ERROR=1.OE-10
WRITE(6,*)A,B,C,D
ERRBwCABS (B)
ERR=CABS (A)
IF(ERR.LE.ERROR.AND.ERPB.LE.ERROR) GO TO 30
IF(ERR.LE.ERROR) GO TO 10
RI{O(i)=(-B4-D)/ (2.O*A)
RliO(2)=(-B-D)/ (2.O*A)
GO TO 20

10 WRITE(6,50)ERR
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50 Fr)RMAT('0',tWE, HAVE ONE ROOT BECAUSE A = ,Gl4.7/)
RI{O(1)=-C/B
RHO (2) =RHO (1)

20 CONTINUE
CALL POINCR(RHO ,THETA,PHI)
GU TO 1

30 CONTINUE
Isw=1
WR~ITE(6 ,40)

40 FORMATC0O','A =B =0.0 ,NO ROOTS.......I
1 CONTINUE

PETtJRN

END
SUBROUTINE XPOL(S,RHO,TfIETA,PHI,ISW)

C THIS ROUTINE CALCULATES XPOL NULLS AND REPRESENT THEM ON THE
C POINCARE' SPHERE
C

COMPLEX S(2,2),RHO(2),A,B,C,D,CONJG,CSQRT
DIMENSION THETA(2) ,PHI(2)
A=S(2,2)*CONJG(S(2,1))+S(2,1)*CONJG(S(1,1))
B=S(2,2)*CONJG(S(2,2))-S(1,1)*CONJG(S(l,l))
B=B-S(1,2)*CONJG(S(2, 1))+S(2,1)*CO1NJG(S(1,2))
C=S(1,1)*CONJG(S(1,2))+S(1,2)*CCONJG(S(2,2))
Cm-C
D=CSQRT(B*B-4. O*A*C)
ERROR=1 .OE-1O
ERRB=CADS (B) *

ERR=CABS (A)
WRITE(6,*)A,B,C,D
IF(ERR.LE.ERROR.AND.ERRB.LE.ERROR) GO TO 30
IF(ERR.LE.ERROR) GO TO 10
RHtO(1)=(B+-D)/ (2.O*A)
R}IO(2)=(B-D) /(2. O*A)
GO TO 20

10 WRITE(6,5O)ERR
50 FORMAT('O','WE HAVE ONE ROOT BECAUSE A =',G14.7/)

RHO (1) =C /B
RHO (2) =RHO (1)

20 CONTINUE
CALL POINCR(RHO,THETA,PHI)
GO TO I

30 ISW=2
WRITE(6 ,40)

40 FORMAT('O','A = B = 0.0 , NO ROOTS .........t/

1 CONTINUE
RETURN
END

C
SUBROUTINE P0 INOR (RHO ,THETA,PH)
COMPLEX RHO(2),CIQ,CONJG,YY
DIMENSION THETA(2) ,PHI(2)
COMMON CI,PI,PI1,PI18O
AMIN- .E-10
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DO 1 I= 1, 2
YY=1.0+CI*RI{O(I)
YY1=CABS(YY)
IF(YY1.LE.AllIN) GO TO 10
Q=(1.0-CI*RHO(I))/YY
Q2=CABS(Q)**2
Q3=-(l.0-Q2)/(1.0+Q2)

K W1=AIMAG(Q)
W2=REAL(Q)
IF(ABS(W1).LE.AMIN.AND.ABS(W2).LEý.klIN) 0O TO 40
PHI (I)=-ATAN2(W1 ,W2)
PHI (I)-PHI (I)*PI 1
GO TO 20

40 WRITE(6,5O)
50 FORMAT('0','PHI IS ARBITRARY ,REAL AND IMAG Q ARE ZERO'/)

10 CONTINUE

Q3=1.0
WRITE(6 ,30)

30 FOR24AT('O','Q IS INFINITY ,PHI IS ARBITRARY /

20 THETA(1)=ARCOS(Q3)
THETA(I)=TMTA(I)*PI1

1 CONTINUE

END
SUBROUTINE SCAT(SIGIU{,SIGH-V,SIGVV,PHIHHI,PHIVV,S)
COMPLEX CI,S(2,2)
COMMON CI,PI,PI1,PI180
PRINT,'CI , PI = ',CI,PI
PHIHH=PHIHH*PT 180
PRIVV=PHIVV*PI 180
SIGHH=SIG1H{/2O.0
S 1=10. O**SIGHH
S(1, 1)=S1*(COS(PHIHH)+CI*SIN(PHlHH))
SIGHV-SIGHV/20 .0
S2=10 .0**SIGHV
S(1,2)=S2
S (2, 1)=S (1, 2)
SIGVV=SIGVV/20 .0
S3=10 . **SIGVV
S(2, 2)=S3*(COS(PHIVV)+CI&*SIN(PHIVV))

RETURN
END

0.0 3.1 -24.4 4.6 203.5 193.5
9.50 0.5 -14.9 2.1 -170.2 -156.2
26.0 3.6 -16.1 2.8 128.0 121.0
42.75 1.i -29.5 1.2 65.1 75.6
77.71 21.5 -18.3 21.5 -8.3 -10.8
96.0 -0.5 -22.1 -0.8 -36.0 -45.5
:08.0 -23.2 -21,.8 -5.1 108.3 -162.2
125 '1O -1.4 -28.5 0.6 -22.9 -60.4
172..u 17.3 -15.2 18.4 -133.4 -131.4
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1-2 SECOND COMPUTER PROGRAM

This program reconstrucs the scattering matrix [S] with relative phase from [M]

or (Mm] using the equations of Section 3.6.2.

//BAKRY JOB
/*JOBPARM R=348
// EXEC WATFIV
//SYSIN DD
$JOB NOEXT
C
C THIS PROGRAM CALCULATES T•E RELATIVE PHASE SCATTERING MATRIX (S)
C FROM MUELLER (M) AND/OR MODIFIED MUELLER (MM) MATRICES IN BISTATIC
C AND MONOSTATIC CASES.
C
C DATA : MDATA = NUMBER OF (M)'S MATRICES TO BE ENTERED AS DATA
C MMDA A = ,t, ,,(M ) to , t, , t, ,, ,, ,

C MON=O FOR MONOSTATIC , MON <> 0 FOR BISTATIC
C NROW= NUMBER OF ROWS
O

COMPLEX S(2,2),Cl
DIMENSION AM(4,4),AS(2,2),PHI(2,2)
COMMON PI,PI1,CI,MON
PI1=4. O*ATAN(l. O)

PI1=10O.0/Pt
CI=(O.O,1.0)

C WRITE(6,*)PI,CI
MON=O
NROW=4
IF(MON.EQ.O) NROW=2
MDATA = 3
MMDATA = 3
NDATA = MDATA + MMDATA
DO 999 II=I,NDATA
READ 55,((AM(I,J),J=1,4),I=1,NROW)

55 FORMLAT(4E10.3)
IF(II.GT.MDATA) GO TO 10
WRITE(6,50)

50 FORMAT('1','THE INPUT DATA OF THE MUELLER MATRIX IS :'//)
DO 1 I-1,NROW

1 WRITE(6,60)(AM(I,J),J='1,4)
60 FORMAT('O',2X,4(E10.3,5X))

CALL AMTOS(AM,AS,PHI)
GO TO 20

10 WRITE(6,70)
70 FORMAT('1','THE INPUT DATA OF THE MODIFIED MUELLER MATRIX IS :'//)

DO 2 Ia1,NROW
2 WRITE(6,60)(AM(I,J),J=1,4)
CALL AMMTOS(AM,AS,PHI)

20 CONTINUE
DO 30 J,1,2
DO 30 1=1,2

= ~~~S (I, J),,AS (I, J)* (COS (PHI (!,J) )+CI*SIN (PHI (I ,J)) )
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30 CONTINUE
WRITE(6,80)PHiI(1,2)

80 FORIIAT('-','THE SCATTERING MATRIX WITH ARBITRARY PHASE PHIAB
].Y8.3,2X, 'DEGREES'/!)
DO~ 3 I=1,2

3 WRITE(6,60)(S(I,J),J-1,2)I ~WRITE (6,90)
r 90 FORMAT('-')'THE SCATTERING MATRIX IN POLAR FORM IS:'/

DO 4 1=1,2
4 WRITE(6,60)(AS(I,J),PHI(I,J),J=1,Z)

999 CONTINUE
k STOP

END

C HSRUIECLUAE H EAIEPAESATRN ARXFO
SUBROUTINE AMTOS(AM,AS,PHI)

C

C P111(1,2) IS ARBITRARY E.G. (=0.0)
C

COMPLEX CI
DIMENSION AM(4,4),AS(2,2),PHI(2,2)
COMMON PI,PI1,CI,MON

C* WRITE(6,*)PI,CI
C;.
C CALCULATE THE MAGNITUDES OF (S)
C

IF(MON.NE.O) GO TO 10
j AM(2,1)=AM(1,2)

AM(3,2)=AM(2,3)

AM(4,2)=-&M(2,4)
10 CONTINUE

AS(1,2.)=SQRT((AM(1,1)-AM(1,2)+AM(2,14)AM(2,2))/2.0)

AS(2, 1)=SQRT((AMK(l,l)1'AM(1,2)-AM(2,1)-AM(2,2))/2.0)

C CALCULATE THE RELATIVE PHASES OF (S)
C

PHI(1,2)0,0O
X=AM(1 ,3) +AM (2 ,3)
Y-AM (1,4) +AM (2,4)
PHI (1, 1)=PII(1 ,2)+AT&N2(Y,X)
X=AM(3 1)-AM(3 ,2)

* ~PHI(2,2)=PHI(1.,2)+ATAN2(Y,X)
X=AI(1,3)-AM(2,3)
YmAI(.1,4)-AM(2,4)
P111(2, 1)=PHI(2,2)+ATAN2(Y,X)

C PRINT,'PKI(2,1) -',PHI(2,I)
IF(MON.EQ.0) PHI(2,1)=PHI(I.,2)
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RETURN
ENDc
SUBROUTINE AMMTOS (AM,AS,PHI)

C
C THIS ROUTINE CALCULATES THE RELATIVE PHASE SCATTERING MATRIX FROM
C THE MODIFIED MUELLER MATRIX IN BISTATIC AND MONOSTATIC CASES.
C PHI(1,2) IS ARBITRARY E.G. ( 0.0 )
C

COMPLEX CI
DIMENSION AM(4,4),AS(2,2),PHI(2,2)
COMMON PI,PI1,CI,MON

C WRITE(6,*)PI,CI
C
C CALCULATES THE MAGNITUDES OF (S)
C

IF(MON.NE.O) GO TO 10
Ail(2, 1)=AM(1,2)
AM(3,2)=2.0*AM (2,3)
AM(4,2)=-2.0*AM(2,4)

10 CONTINUE
DO 1 1=1,2
DO 1 J=1,2
AS(I,J)=SQRT(AM(I ,J))

I CONTINUE
C f

C CALCULATES THE RELATIVE PHASES
PHI(1,2)=0.O

PHI(1,1)=PHI(1,2)+ATAN2(AM (1,4),AM(1,3))
PHI(2,2) 'PIII(1,2)+AfAN2(AM(4,2) ,AM(3,2))
XF(MON.EQ.0) GO TO 20
Y-AM (3,4)+AM(4,3)
X=kM(3,3)-AM(4,4)
PHI (2, i)=PHI (1 ,2)+ATAN2(Y,X)
GO TO 21

20 PHI(2,1)=PHI(1,2)
21 CONTINUE

RETURN
END

$ ENTRY
0.500E 00-0.494E 30 0.679E-01-0.179E-O1

0.491E 00-0.631Z-01 0.206E-01
o.500E O0-0.403E 00 o.251E o0-o.884E-0o

0.368E oo-0.169E 00 o.124E 00
0.500E 00 0.454E-01-0.606E-04 0.350E-03

0.488E 00-C.815E-02 0,877E-Oi
0.162E-0' 0.471E-02 0.239E-02 O.138E-02

0.989E 00 0.655E-01-O.193E-0i
0.306E-01 0.662E-01 0.413E-01 0.17BE-01

O.637E 00 0.210E 00-O.106E 00
0.540E 00 O.578E-02-,O.344E-01 0.44OE-01

0.449E 00-0.262E-01.0,437E-01

I,
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This program reconstructs the scattering matrix [S] from the knowledge of the

spherical -;o~rdinates on the Poincare sphere of two COPOL nulls or one COPOL

and one XPOL null using the equations of Section 3.7. *
//BAKRY JOB
/*J0BPARM R-348
//GO EXEC WATFIV,PARM=NOEXT
//SYSIN DD*

$ JOB

C THIS PROGRAM RECONSTRUCTS THE SCATTERING MATRIX (S) WITH RELATIVE
C PHASE GIVEN ITS COPOL NULLS (P,THETA,PHI), WHERE P,THETA AND PHI
C ARE THE RADIUS, COLATITUDE AND LONGITUDE OF THE COPOL NULLS ON THE
C POINCARE' SPHERE OR ONE COPOL AND ONE XPOL NULL.
C DATA: PUT NCC (TWO COPOL NULLS) FIRST.
C PUT NCX (ONE COPOL AND ONE XPOL NULL) SECOND.
C

DIMENSION THETA(2),PHI (2)
COMPLEX CI,Q,RI{O(2),Rl,R2,AK,S(2,2),Sl,Q1,R3,CONJG
C1=(0.0,1.0))
PI=4.O*ATAN(1.0)
P1180=PI/ 180.0
P11-180.00

C PRIN1,P1,CI
ANIN-I.E-03

NCC=12
NCX?=5
NDATA=NCC+NCX
DO 10 II=I,NDATA4 IF(II.LE.NCC) WRITE(6,l00)
IF(II.GT.NCC) WRITE(6,110)
READ(5,50)P, (CETA(I),PHI(I),I=1,2)
WRIT.E(6,60)P, (THETA(I) ,PHI(I) ,I=1,2)
WRITE(6,70)
DO 1 1=1,2
THR-THETA(I)*PI180
PKR=PHI (I )*PI 180
X-1.0O+COS (1HR)
Y=1.0-COS(TH-R)
IF(Y.LE.l.E-07) GO TO 20
Z=SQRTi(X/Y)

20GOTO 21
20ZAMAX

21 CONTIRUE
QinZ*(COB(PHR)-CI*SIN(PH1R))
Q1ml1.O+Q

C PRINT,'Ql - ',Q1I IF(CABS(Q1).LE.1.E-03) GO TO 30

C IF(CAI3S(Q1).LE.AMIN) Q1-1.0/AMAX

1-7
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GO TO 31
30 RHO(I)=-CI*AMAX
31 CONTINUE
1WRITE(6,71)THETA(I),PI{I(I),Q,RHO(I)
1CONTINUE
IF(II.GT.NCC) GO TO 40

C PRINT,'**RHO(l),RHO(2) ',RI{O(1),Ri{O(2)
Rl1RHO(1)+RHO(2)
R2-PRHO(1)*RHO(2)
RlMAG=CABS (Rl)
X1=AIMAG (Rl)
X2=REAL(R1)
IF(ABS(Xl).LE.AMIN.AND.ABS(X2).LE.A'N) GO TO 45

RlPHAS=ATAN2(X1 ,X2)
GO TO 46

[45 CONTINUE
R1PHAS0. 0

46 CONTINUE
c PRINT,'**TEST*',R1,R2,X1,X2,RlPHASI' R2MAG=CABS (R2)

X=RlMAG~v2+2 . *R2MAG**2+2 .0
X=2.0*X
AK=SQRT(P/X)
Sl-COS (RiPHAS) -CI*SIN(RlPHAS)
S(1,1)=-2.0*R2*Sl
S(1,2)=R1MAG
S (2, 1) =S(1 ,2)
S(2,2)=-2.0*Sl
GO TO 41

40 CONTINUE
*C

C %2LO(l) ............. COPOL NULL
C RHO0(2) ............. XPQL NULL
C

Rl-R1MGCBS(Ri)*2CNGRO))H(
RRlIIO=CB(1)**CNGRH()+RO2
RlPHAS=ATAN2 (AIMAG (Rl) ,REAL(R.1))
R2=li{O(1)-RHO(1)*CABS(R1{O(2) )**'2-2.O*RIO(2)

R3=2.0*RHO(1)*CONJG(RHO(2))-CABS(R1HO(2))**
2+1.0

* R2MAG=CABS(R2)
R3MAG=CABS (R3)
D=2 .0*RlMAG**2+(CABS (RHO (1))*R2MAG )**2+R3,MG**Z
AK=SQRT(P/D)
SIsCOS'R1PH~AS) -CI*SIN(R1PHAS)
S(1,1)=RHO(1)*S1*R2
S(1,2)=R1MAG
S(2,1)uS(1,2)
S(2,2)=-R3*Sl

41 CONTINUE
WRITE(6 ,80)AK

* DO 2 I=1,2

WRITE(6,81)(S(I,J),J=1,2)
2CONTINUE
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WRITE(6,90)
DO 3 I=1,-"
WRITE(6,81)(S(I,J)*AK,J=1,2)

3 CONTINUE
10 CONTINUE

STOP
50 FORMAT(5F10.3)
60 FORMAT('0','THE INPUT DATA IS :'// t O','P = ',F1O.3/'O',

1'THETA(1) = ',F10.3,2X,'DEGREES',10X,'PHI(1) = ',FI0.3,2X,
2'DEGREES'/'O','THETA(2) = ',FIO.3,2X,'DEGREES',10X,'PHI(2) =
3F10.3,2X,'DEGREES'//)

70 FORt.T('O',2X,'THETA(DEG.)',5X,'PHI(DEG.)',11X,'Q',19X,'RHO'/)
71 FORMAT('O',2(2X,F10.3),2(2X,2E10.3))
80 FORMAT('1','THE RECONSTRUCTED SCATTERING MATRIX WITHOUT MULTIPLYINpI

iG BY THE CONSTANT K = ',2Fl0.3,2X,'IS '//)
81 FORMAT('0',2(2X,2F1O.3))
90 FORMAT('O','THE SCATTERING MATRIX IS '1/)
100 FORMAT('1','TIIE COPOL NULLS ARE KNOWN'//)
110 FORMAT('l','ONE COPOL NULL AND ONE XPOL NULL ARE KNOWN'//)

END
$ENTRY
1.0 109.414 -4.055 66.486 -11.708
1.0 118.001 -22.209 41.311 -45.001
1.0 172.57 70.438 7.736 179.957
1.0 139.467 -31.889 40.877 58.378
1.0 177.921 -28.335 0.934 -31.12
2.,0 0.0 180.0
2.0 90.0 -90.0 90.0 90.0
I..0 180 .0 180.0
1'.O 0.0 0.0
1.0 90.0 180.0 90.0 180.0
1.0 90.0 0.0 90.0 0.0
1.0 90.0 270.0 90.0 270.0
1.0 109.414 -4.055 92.054 172.172
1.0 118.001 -22.209 100.543 148.062
1.0 172.57 70.438 89.735 -53.177
1.0 139.467 -31.889 89.756 -166.555
1.0 177.921 -28.335 90.568 150.796

-, - --- ~ -~-.---~------- II-~7i~t ~- . ..~.... - i
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